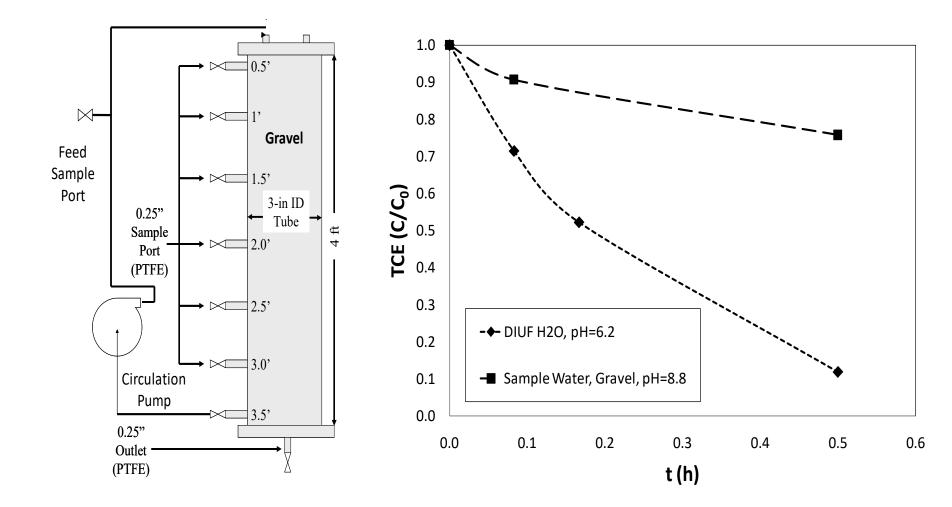

Nano-Particle Project

History

- Project is a follow up to previous research projects:
 - Project 13: Bench Scale Demonstration of Nano-Structured Bi-metallic systems
 - Dr. D.B. Bhattacharyya, UK Engineering
 - Project 3: Groundwater Modeling
 - Dr. Sirinivasa Lingireddy, Dr. Chandramouli Viswanathan; UK Engineering
 - Project 16: Field Seismic and Groundwater Investigation to Identify Structural Features Relating to the Discharge of contaminated Groundwater to Little Bayou Creek through Seeps
 - Dr. Alan Fryar, UK Geology; Dr. Stephen Greb

Nano-Particle Remediation

Environmental Contaminants


Table 1. Common environmental contaminants that can be transformed by nanoscale iron particles

Chlorinated methanes Carbon tetrachloride (CCl₄) Chloroform (CHCl₃) Dichloromethane (CH₂Cl₂) Chloromethane (CH₃Cl) Chlorinated benzenes Hexachlorobenzene (C₆Cl₆) Pentachlorobenzene (C₆HCl₅) Tetrachlorobenzenes (C₆H₂Cl₄) Trichlorobenzenes (C6H3Cl3) Dichlorobenzenes (C₆H₄Cl₂) Chlorobenzene (C6H5Cl) Pesticides DDT (C14HoCl5) Lindane (C₆H₆Cl₆) Organic dyes Orange II (C16H11N2NaO4S) Chrysoidine (C12H13CIN4) Tropaeolin O (C12H2N2NaO5S) Acid Orange Acid Red Heavy metal ions Mercury (Hg²⁺) Nickel (Ni²⁺) Silver (Ag⁺) Cadmium (Cd2+)

Trihalomethanes Bromoform (CHBr₃) Dibromochloromethane (CHBr,Cl) Dichlorobromomethane (CHBrCl₂) Chlorinated ethenes Tetrachloroethene (C₂Cl₄) Trichloroethene (C2HCl3) *cis*-Dichloroethene $(C_2H_2Cl_2)$ trans-Dichloroethene (C₂H₂Cl₂) 1,1-Dichloroethene (C₂H₂Cl₂) Vinyl chloride (C₂H₃Cl) Other polychlorinated hydrocarbons PCBs Dioxins Pentachlorophenol (C6HCl5O) Other organic contaminants N-nitrosodimethylamine (NDMA) (C4H10N2O) TNT $(C_7H_5N_3O_6)$ Inorganic anions Dichromate (Cr₂O₇⁻) Arsenic (AsO₄³⁻) Perchlorate (ClO₄) Nitrate (NO₃)

Nanoscale Iron Particles for Environmental Remediation: An Overview Wei-xian Zhang, Journal of Nanoparticle Research 2003

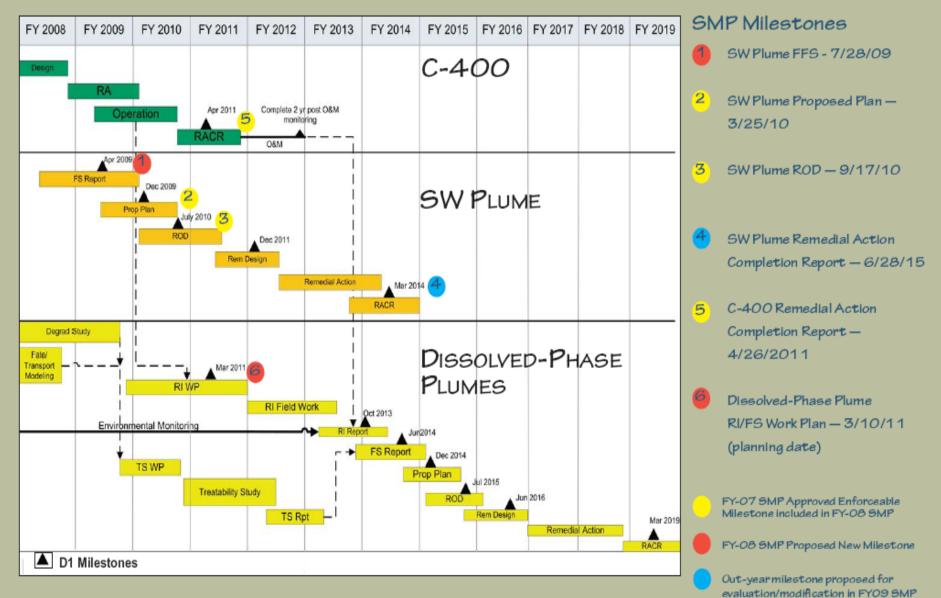
Bench Studies

Journal Publications

- Lewis, Lynch, Bachas, Hampson, Ormsbee, Bhattacharyya, Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems, Environmental Engineering Science, 2009
- Meyer, Hampson, Ormsbee, Bhattacharyya, A study of Groundwater Matrix Effects for the Destruction of TCE using Fe/Pd Nanoaggregates, Environmental Progress, American Institute of Chemical Engineers Journal of Environmental Progress, 2008
- Xu and Bhattacharyya, Modeling of Fe/Pd Nanoparticle-Based Functionalized Membrane Reactor for PCB Dechloritnaion at Room Temperature, Journal of Physical Chemistry, 2008
- LaSage, Sexton, Mukherjee, Fryar, Grebe Groundwater discharge along a channelized Coastal Plain stream, Journal of Hydrology, 2008

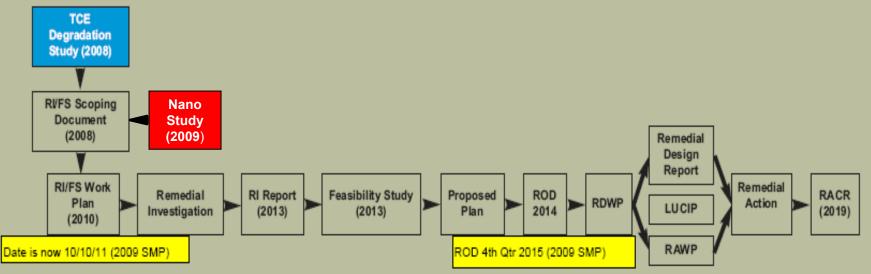
Presentations

- Bhattacharyya
 - Membrane Immobilized Nanostructured Metals for Detoxification of TCE and PCBs, NIEHS-SRP Annual Conference, 2008
 - Nanotechnology-Based Membrane Systems for Detoxification for Chlorinated Organics from Water, EPA International Environmental Nanotechnology Conference, 2008
 - Chloro-organic degradation from water by naonsized metallic systems by hydroxyl radical reaction, Engineering Conferences International, Tomar, Portugal, 2007
- Ormsbee
 - University of Kentucky Superfund Basic Research Program Research Translations Activities at the Paducah Gaseous Diffusion Plant, NIEHS-SBRP Annual Conference, 2008
- Ormsbee and Bonczek
 - Partnering with Universities In Support of Superfund Cleanup, NARPM, 2009,


Project Goal

- To develop a Treatability Study Workplan for a Nano Particle Treatability Study at the PGDP.
 - Treatability Study (TS) Goal: "Demonstrate the feasibility and effectiveness of nanoparticles to remediate dissolved phase TCE in PGDP groundwater."

Project Guidance


- Guidance for Conducting Treatability Studies Under CERCLA, EPA/540/R-92/071a, October 1992
 - Iron Filings Treatability Study Work Plan for the Northwest Plume Interim Remedial Action, DOE/OR/07-1271&D2 1995
 - Treatability Study Work Plan for the Permeable
 Treatment Zone, DOE/OR/07-1861&D1, 2000
 - Treatability Study Work Plan for C-Sparge,
 Groundwater Operable Unit, DOE/OR/07-2018&D1
 2002

Groundwater Operable Unit Schedule

9

Dissolved Phase Plume Schedule Overview and Status

Near-Term 2006 - 2009

- Support TCE Fate & Transport analysis by performing necessary fieldwork and analysis as identified by Fate & Transport Working Group
- Update groundwater model
- Develop and submit to regulators RI/FS
 Scoping Document

- Development and regulatory approval of
- RI/FS Work Plan

Out-Year 2010-2019

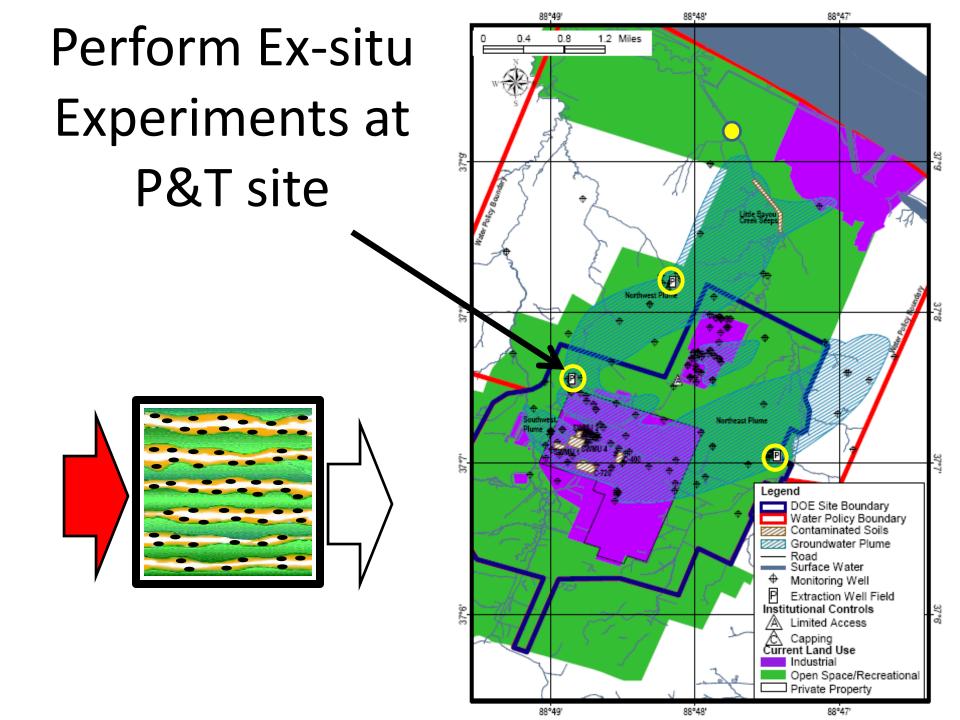
- Implement RI fieldwork
- Development and regulatory approval of RI Report
- F5 development and regulatory approval
- Development and regulatory approval of Proposed Plan
- Development and regulatory approval of ROD and LUCIP

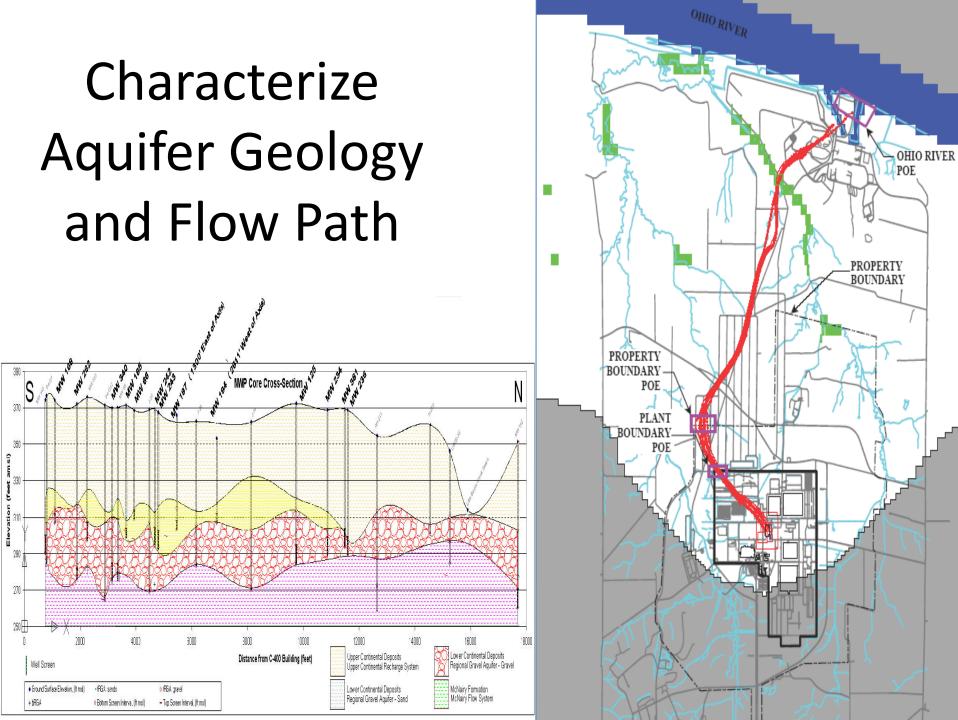
- Development and regulatory approval of Remedial Design Work Plan
- Development and regulatory approval of Remedial Design Report and Remedial Action Work Plan
- Implement remedial action
- Development and regulatory approval of Remedial Action Completion Report

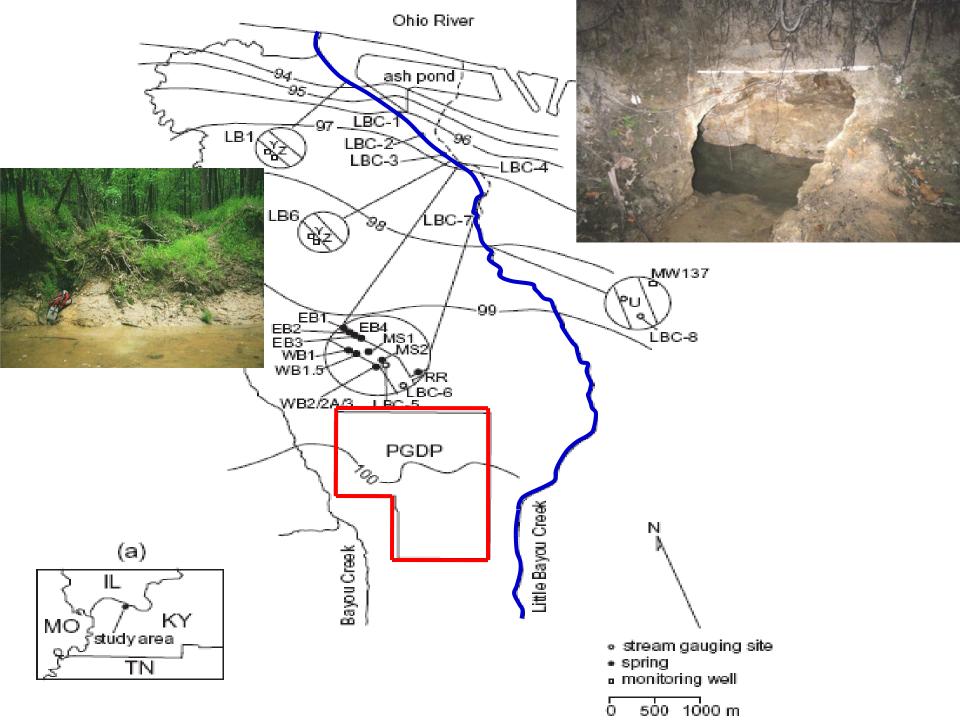
Tentative Project Team

- Dr. Lindell Ormsbee (UK)
- Dr. D. Bhattacharyya (UK)
- Dr. Vasile Smuleac (UK)
- Scott Lewis (UK)
- Noah Meeks (UK)
- Steve Hampson (UK)
- Dr. David Sedlak (UC Berkley)
- Dr. Subhas Sikdar (EPA Cinn)
- Dr. Greg Lowry (Carnegie Mellon)
- Dr. Rich Bonczek (DOE)
- Dave Dollins (DOE)

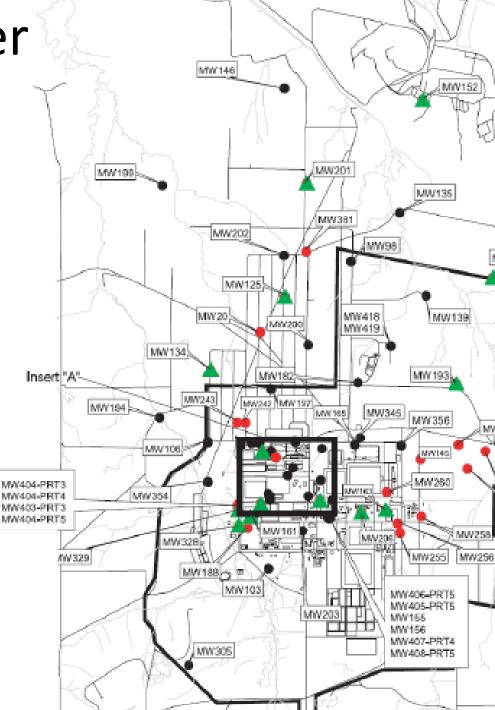
- Jeff Carman (PRS)
- Brian Clayton (PRS)
- Ed Winner (EEC)
- Todd Mullins (EEC)
- Brian Begley (EEC)
- John Farrell (PRC)
- Walt Richards (PRC)
- Turpin Ballard (R4-EPA)
- Ben Bentkowski (R4-EPA)
- Elliot Jones (R4-EPA)


Project Draft Workplan


- Perform baseline experiments
- Perform ex-situ experiments at P&T site
- Characterize health and safety of proposed nano-particles
- Characterize aquifer geology, chemistry and flow path
- Perform tracer study to confirm flow path
- Perform in-situ experiments

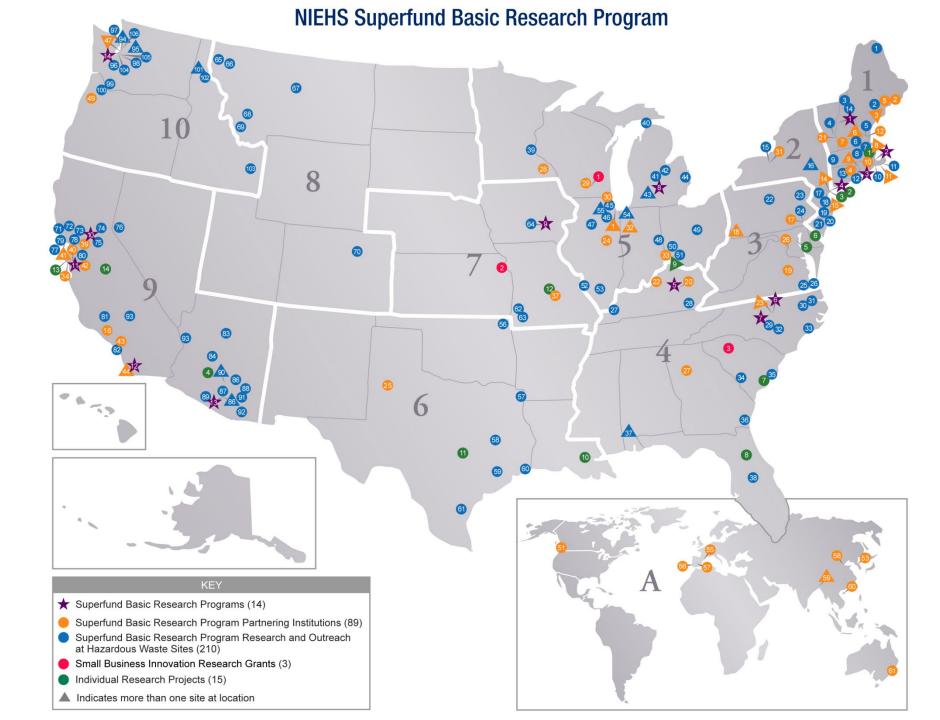

Perform Baseline Experiments

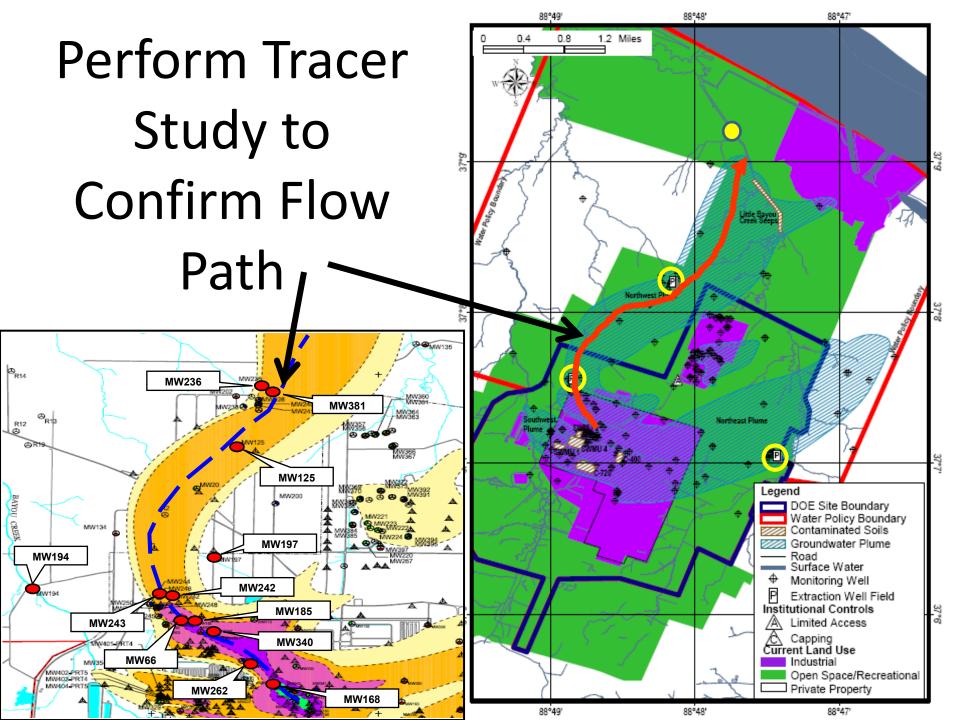
- Static (Batch) Experiments
 - Temperature
 - Oxygen
- Dynamic (Reactor) Experiments
 - Nano Particles (Fe/Pd)
 - Water/Media
 - Static (membrane)/Dynamic (particles)

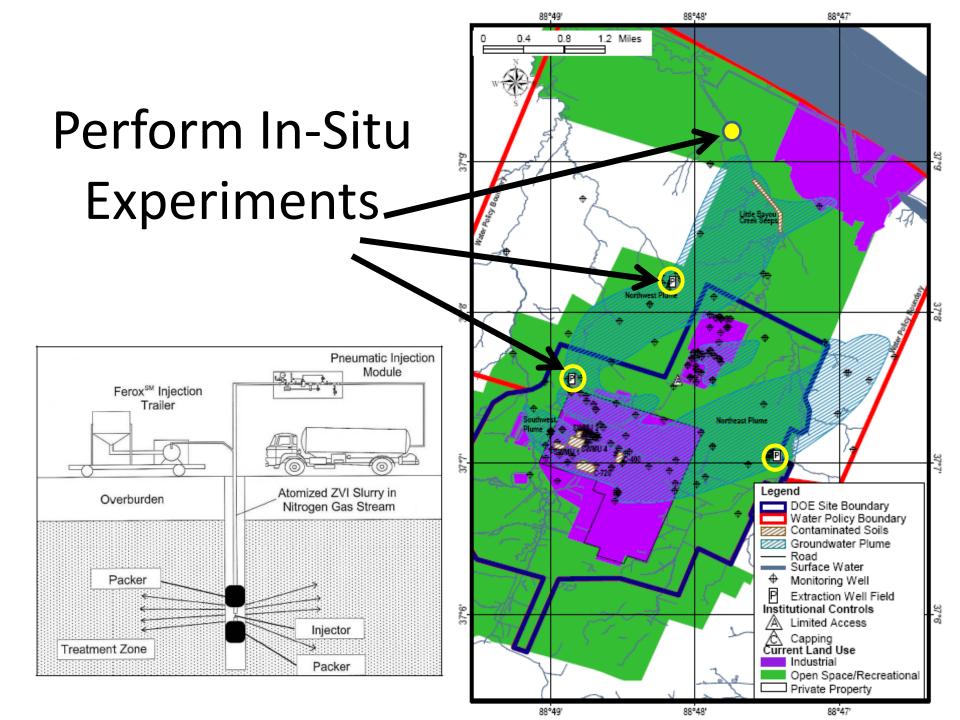


Characterize Aquifer Chemistry

Table C.18. Surveillance Geochemical Wells (35)	Table C.19. Surveillance Geochemical Annual Analytical Parameters		
MW20	Other	Metals (total and dissolved)*	
MW99	Sulfate	Aluminum	
MW100 MW125	Nitrate	Antimony	
MW125 MW134	Total Organic Carbon	Barium	
MW145	Chloride	Beryllium	
MW152	Total Dissolved Solids	Cadmium	
MW161	Silica	Calcium	
MW163	Fluoride	Chromium	
MW188	Phosphate	Cobalt	
MW193	Thosphale		
MW206	Field Parameters	Copper Iron	
MW201 MW242	Barometric Pressure	Lead	
MW243		2010	
MW243 MW255	Specific Conductance	Magnesium	
MW256	Depth to water	Manganese Matat damag	
MW257	Dissolved Oxygen	Molybdenum	
MW258	Eh	Nickel	
MW260	pH	Potassium	
MW261	Temperature	Silver	
MW288	Turbidity	Sodium	
MW291	Alkalinity	Zinc	
MW292	Ferrous Iron	Arsenic	
MW328		Mercury	
MW329 MW339	Volatiles	Selenium	
MW 339 MW 343	Ethene	Uranium	
MW343 MW381	Ethane		
MW403 Part 3	Methane	PCBs	
MW404 Part 3		PCB, Total	
MW404 Part 4		PCB-1016	
MW404 Port 5		PCB-1221	
MW409		PCB-1232	
MW414		PCB-1232	
		PCB-1242	
		PCB-1254	
		PCB-1260	


PCB-1268


_



Characterize health and safety of proposed nano-particles

- EPA National Risk Management Research Laboratory
 - Dr. Subhas Sikdar, Asssociate Director for Science
- NIEHS-SRP
 - Bill Suk, Director
- NIEHS-SRP
 - 14 programs

Tentative Project Schedule

- Internal Project Kickoff Meeting (July 29th)
- Internal Project Team Meeting (August 17th)
- Project Team Kickoff Meeting (Sept 2nd)
- Scoping Document Final (Nov 20th)
- Treatability Study Final (March 19th)

Additional Research

- EPA International Environmental Nanotechnology Conference: Applications and Implications, October 2008
 - Remediation
 - Fate and transport
 - Water Pollution Control
 - Toxicity
- Bhattacharyya, Sedlak, and Ormsbee, NIEHS-SRP Supplemental Award, \$300,000, October 2009-September 2011
 - Reductive pathways
 - Oxidative pathways

Additional Studies

 Cost and Performance Report Nanoscale Zero-Valent Iron Technologies for Source Remediation, Naval Facilities Engineering Command, 2005

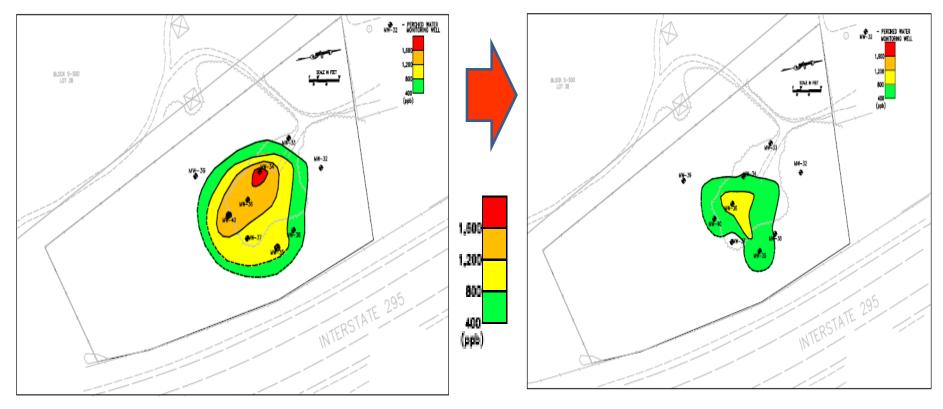

	Hunters Point Study #1	Hunters Point Study #2	NAS Jacksonville	NAES Lakehurst
	\$31,000 - Mobilization	-	\$28,000 - Mobilization	
	\$62,000 -		\$52,000 - Monitoring	\$24,400 -
	Labor/Drilling for		Well Installation	Monitoring Well
	injection			Installation
	\$100,000 (\$32,500 of	\$770,000 -	\$67,000 (\$37,000 of	\$154,600 - NZVI
	which are for ZVI) -	Treatability	which are for NZVI) -	Treatment
	Equipment/Supplies	study field effort	Injection/Circulation	
	for injection:	¢462.000	Events	¢ 50, 400
	\$96,000 – Monitoring,	\$452,000 -	\$112,000 - Monitoring	\$58,400 -
	IDW disposal, and miscellaneous costs	Monitoring, sampling, and	and investigation- derived waste (IDW)	Sampling and Analysis
	miscenaneous cosis	analysis	disposal, miscellaneous costs	Anarysis
		\$168,000 -	\$153,000 - Project	\$18,100 -
		Project manage- ment, data management, and reporting	Management, Work Plan, Bench-Scale Study	Reporting
Demonstration Total:	\$289,000	\$1,390,000	\$412,000	\$255,500
Treatment Volume (yd ³):	1,683	27,778	967	9,500
Cost per yd ³ of Soil Treated:	\$172	\$50	\$426	\$27

Table 3-2. Cost Breakdown for the Hunters Point, NAS Jacksonville, and NAES Lakehurst Sites

Additional Studies

Full-Scale Nanoiron Injection for Treatment of Groundwater Contaminated with Chlorinated Hydrocarbons, Varadhi, et al., PSE&G Trenton Switchyard, New Jersey

Groundwater contaminants targeted for reduction consisted of 1,1-dichloroethane (1,1-DCA), 1,1-dichlorethene (1,1-DCE), 1,1,1-trichloroethane (1,1,1-TCA), 1,2-dichloroethane (1,2-DCA), and trichloroethene (TCE).

PARS International