Economic Analysis of Nickel Release Schedules

David L. Silverstein, Ph.D., P.E.

University of Kentucky

Associate Professor

Chemical and Materials Engineering

College of Engineering Extended Campus Programs, Paducah SilverDL@engr.uky.edu

Project Overview

- Volumetrically contaminated metal (⁹⁹Tc and ²³⁵U)
 - 9,400 t of ingots at Paducah
 - 6,000 t scrap at Oak Ridge
 - 20,000 t scrap expected from decommissioning at Paducah, Oak Ridge, and Portsmouth
- Provide information required to maximize benefit from recovery from economic perspective

Project Goals

- Summarize the history of the issues with regard to the release of the nickel
- Report on the possible economic paths forward for the nickel at Paducah
- Analyze the technical, regulatory, and political issues associated with the nickel release
- Propose strategies for overcoming barriers to nickel release

Current Project Status

- Identify Nickel refiners and suppliers and compile historical market data (90%) (10/05 – 5/06)
- Compile historical data on nickel at PGDP (100%) (10/05-8/06)
- Analyze technical issues (90%)(10/05 9/06)
- Analyze regulatory issues (90%) (10/05-9/06)
- Analyze political issues (90%)(6/06 9/06)
- Perform economic analysis on nickel market and impact of possible release schedules (10%)(6/06 – 10/06)
- Develop case study for use in engineering courses (0%) (9/06-10/06)
- Prepare project report (10%) (9/06-10/06)

Regulatory Issues

- No guidelines from NRC
 - EU, other nations have standards for release of volumetrically contaminated scrap
 - IAEA standards
 - Health Physics Society ANSI proposed standards
 - NRC chooses to handle case-by-case
- DOE Moratorium
 - Triggered by imminent ORNL release
 - No contaminated metal releases
 - Modification to policy overdue
 - Assessment performed by DOE in 90's indicated no significant risk to consumers

Table 3—A sample comparison of published clearance standards and Class A LLRW limits for volume concentration of some radionuclides (NCRP, 2002).

Radionuclide ^a or Category	Concentration Limit for Class A LLRW (Bq cm ⁻³) ^b	Clearance Standards for Volumetric Contamination (Bq cm ⁻³) ^{c,d}		
		IAEA	EC	ANSI/HPS
C-14	3.0×10^{4}	840	280	280
C-14 in activated metal	3.0×10^{5}	2.4×10^{3}	790	790
Ni-59 in activated metal	8.1×10^{6}	e	790	_
Nb-94 in activated metal	7.4×10^{2}	2.4	0.79	7.9
TC-99	1.1×10^4	840	28	280
I-129	3.0×10^{2}	84	2.8	28
Alpha-emitting transuranic nuclide with half-life greater than 5 y	$3.7 \times 10^3 (\text{Bq g}^{-1})$	_	_	_
Pu-241	$1.3 \times 10^5 (\text{Bq g}^{-1})$	30 (Bq g ⁻¹)	$10 (Bq g^{-1})$	$10 (Bq g^{-1})$
Cm-242	$7.4 \times 10^5 (\text{Bq g}^{-1})$	_	3	_
Total of nuclides with less than 5 y half-life	2.6×10^{7}	_	_	_
H-3	1.5×10^{6}	8.4×10^{3}	2.8×10^{3}	2.8×10^{3}
Co-60	2.6×10^{7}	0.84	0.28	2.8
Ni-63	1.3×10^{5}	8.4×10^{3}	280	2.8×10^{4}
Ni-63 in activated metal	1.3×10^{6}	2.4×10^{4}	790	7.9×10^{4}
Sr-90	1.5×10^{3}	8.4	2.8	28
Cs-137	3.7 × 10 ⁴	0.84	2.8	2.8

Class A LLRW includes waste containing radionuclides beyond those listed here.

b Adopted from 10 CFR Part 61, Section 61.55.

Adapted from IAEA (1996); EC (2000); ANSI/HPS (1999). (All standards are for all solid materials.)

⁴The published standards are presented in Bg g⁻¹. The values presented here are based on the assumption of the following waste densities: 7.9 g cm⁻³ for radionuclides in activated metal (such as steel), and 2.8 g cm⁻³ as a representative LLRW (Chen et al., 1996).

Oash means not available.

Political Issues


- Trade unions
- Scrap metal industry
- PACE
- Environmental
- Former DOE Facility Reuse organizations
- Public

Technical Issues

- Cleaning nickel
 - Established electrowinnowing methods adequate for overseas standards

- Fall short of current domestic "standard"

Other options and technologies

- VLE based separations
 - CVDR, Inc. claims essentially complete separation using a proprietary CVD process
 - Other KRCEE work indicates a distillation or deposition process is feasible based on volatility differences
- Use in manufacture of waste containers
- Baseline for "clean" nickel established by KRCEE project
- Current cleanup contractor to submit cleanup plan to DOE July 31

Remaining Project Schedule

- Complete collection of historical data for timeline (5/06-10/06)
- Complete regulatory, technical, and political issue analysis (9/06 – 10/06)
- Perform market regression analysis to assess potential impact of nickel release schedule on open market value (9/06-10/06)
- Prepare case study for dissemination and use in engineering economics courses (9/06-10/06)
- Prepare final project report (9/06-10/06)

