

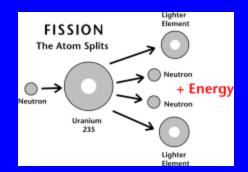
May 2006

Uranium Battery Update for KRCEE

Paul D. Dunbar, Ph.D., P.E. Rhonda Lee-Desautels, Ph.D., P.E. Walter Tracinski B.S. Applied Power International

University of Kentucky Paducah Extension Campus

Paducah Gaseous Diffusion


- 5 Billion Pounds of Depleted Uranium in Paducah
- \$200M Conversion Plant Under Construction
 - Convert UF_6 to U_3O_8
- Low Radiation Levels for depleted uranium 0.1% U₂₃₅ compared to 0.7% U₂₃₅ for natural uranium
 - Great source for U₃O₈

Uranium Properties on Paper

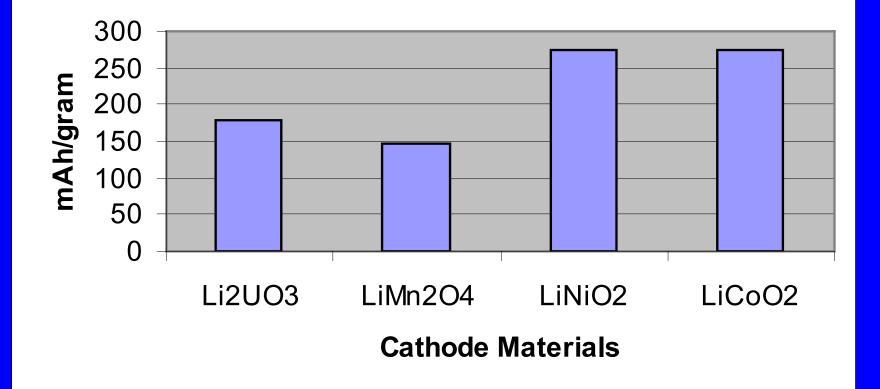
- Uranium Standard Reduction Potential Voltage of 4.7 Volts per Cell from U to UO₂(OH)₂ (in alkaline environment)
- Lithium is 3V per cell
- Lead is 2V per cell
- U can supply 6 electrons instead of 2
 - In reality it is less than 3 electrons
- Uranium is a Highly reactive material

Potential for compact battery With a high power density

$$UO_2(OH)_2 \xleftarrow{-0.3V} UO_2 \xleftarrow{-2.6V} U(OH)_3 \xleftarrow{-2.10V} U$$

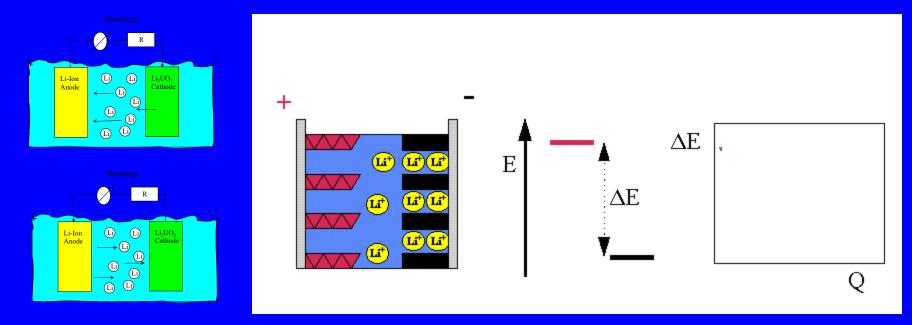
Collaborators and Consultants

- Walter Tracinski
 - Applied Power International (Idaho) Lithium Battery Expert
 - B.S. Chemistry RPI



- Consultant to US Navy, US Air Force, and The Boeing Company. Contracts for batteries on F-18s and F-16s.
- Tested the Galileo spacecraft batteries (500,000 cycles to pass the recharge/discharge)
- Dr. Stephen Lipka
 - Center for Applied Energy Research UK -Electrochemist/Material Scientist,
- Dr. Richard Howard
 - Inorganic Chemist--Battery Materials Consultant (25 years experience in Industry) Developed Cathode materials for Kerr-McGee
- Dr. Chris Johnson
 - Dr. Daniel Thomas, Electrochemical Engineer, The Boeing Company
 - Internal Battery Consultant, The Boeing Company
- Dr. Joseph Spruell
 - Professor of Materials Science, The University of Tennessee

Technical Project Goals


- Mirror the development of manganese dioxide and lithiated manganese oxides as battery materials
 - Characterize uranium dioxide and lithiated uranium oxide's electrochemical properties in various commercial organic solvents/lithium salts
 - Build cells and test using common electrochemical methods
 - cyclic voltammetry
 - impedance spectroscopy
 - Use this information to construct a battery
 - Lithiated Uranium Oxides will allow for lithium intercalation
 - Based on theory Li₂UO₃ is the best candidate

Theoritical Capacity of Cathode Materials in Lithium Ion batteries

Battery limited by the rate at which the cathode can receive the electrons From the anode.

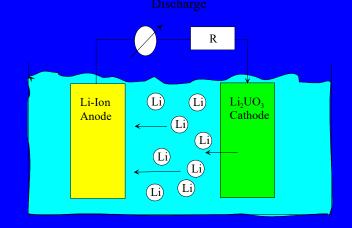
Animation of Lithium-Ion Cell

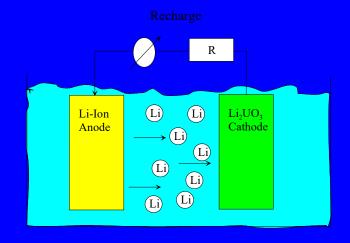
ReCharge and Discharge of Lithium-Ion Anode and Lithiated Uranium dioxide Cathode Battery

Cathodes must have crystal structure to allow re-intercalation

Hybrid Batteries

- Currently hybrids use Nickel Metal Hydride batteries 330 cells
 - Current development Lithium-Ion batteries
 - Toyota has a working minivan prototype in Tokyo using lithium-ion with Lithiated metal phosphate as the cathode in the batteries


Current Work


 Optimize Lithiated Material as Cathode

 Intercalation Behavior

 UO₂ as Capacitor

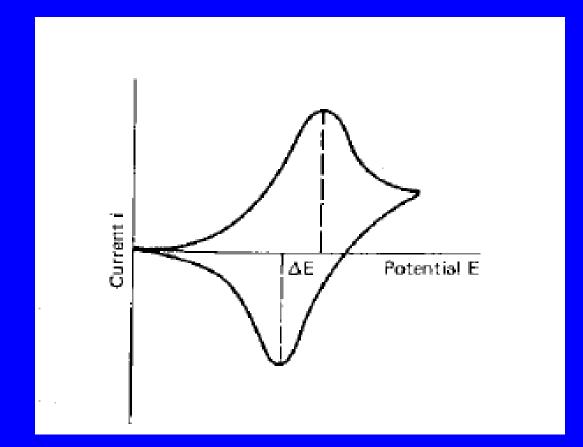
 Planned experiments to make exact charge storage capacity

ReCharge and Discharge of Lithium-Ion Anode and Lithiated Uranium dioxide Cathode Battery

Load leveling battery

- \$10 Billion a year business
- Potential Markets
 - Energy Storage, Load Leveling, and Thermal batteries, Military Applications (Radar stations etc.)
- Secondary Battery
 - Rechargeable
 - High power density
 - Good performance at desired temperature
- Currently lead acid is used as load leveling (Pb/PbO2 in H₂SO₄)
- Japanese are working on lithium-ion load leveling batteries
 - Combining large number of cells

http://www.sei.co.jp/sn/2001/ 09/6b.html

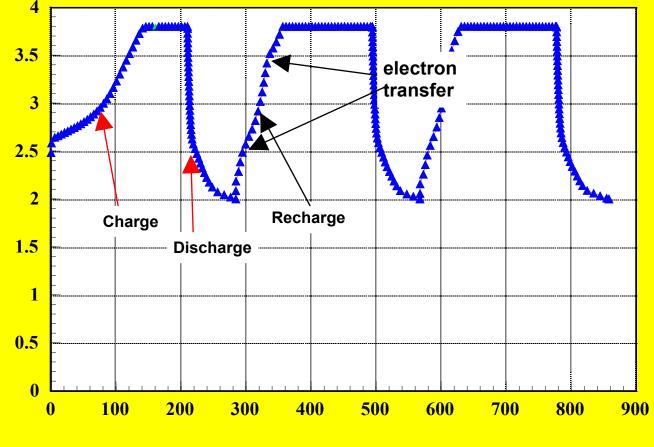

Lithiated Uranium Oxide Material

- Load Leveling Battery
 - 2,000 Amp-hours with 24.5 lbs
 - 15,000 Amp-hours with 183.75 lbs
- Southern California Edison has a load leveling battery with 8256 cells with each of 3250 Amp-hours

164 tons of uranium materials

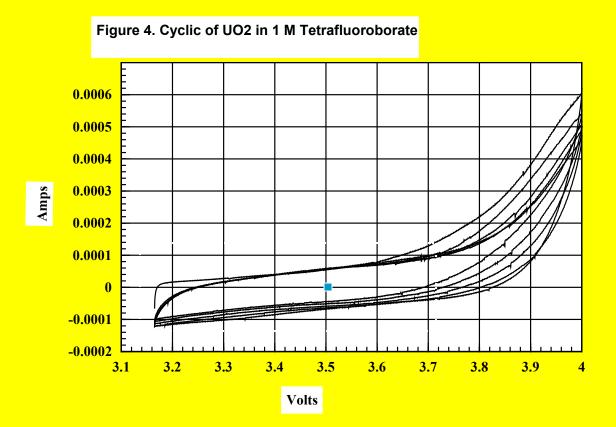
In 10 Billion pounds could produce 50 million batteries at 200 pounds a piece

Textbook CV of reversible, diffusion controlled process


CV of our Material

- 12 times the current as seen in UO₂ alone.
- Lithium is in the structure, but no intercalation is seen.
- Membranes in cell created a very high resistance due to multi-layer structure

Lithium/Lithium uranium battery


Charge, Discharge, and Recharge of Lithium-Lithiated Uranium Oxide Battery through 3 cycles

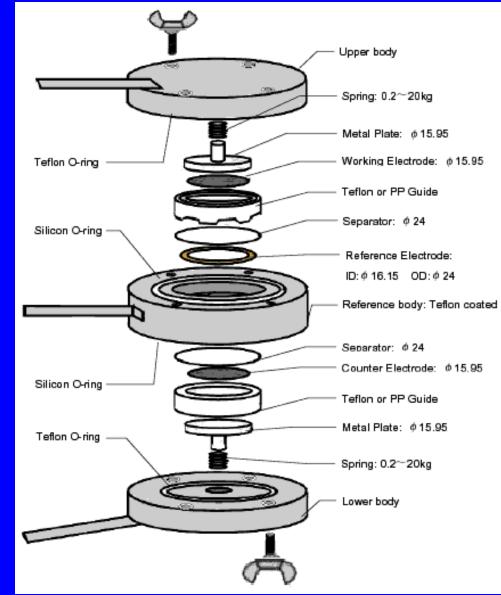
Time (minutes)

Voltage

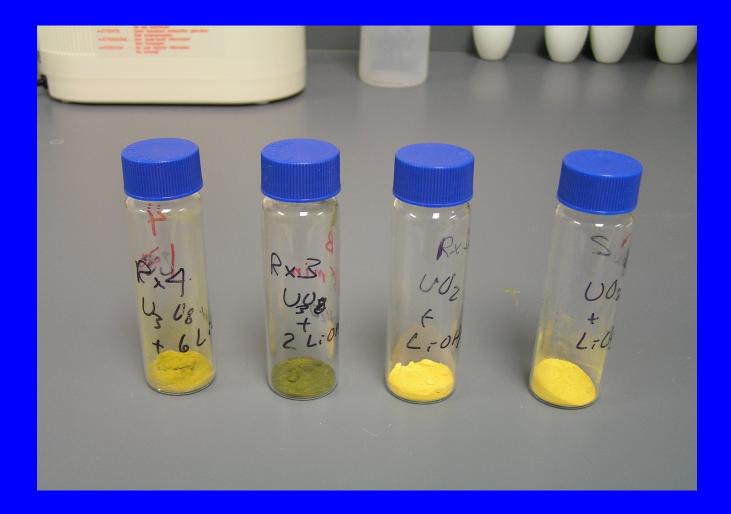
CV of UO2—Capacitor Material

Characterization

Cells



Internal Parts of E-Cell

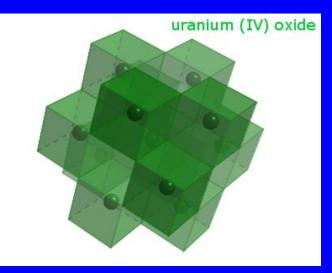


Some Reactions

Lithiated Compounds

Make Li₂UO₃ with a +4 Valence

 Based on Phase Diagrams and the Literature

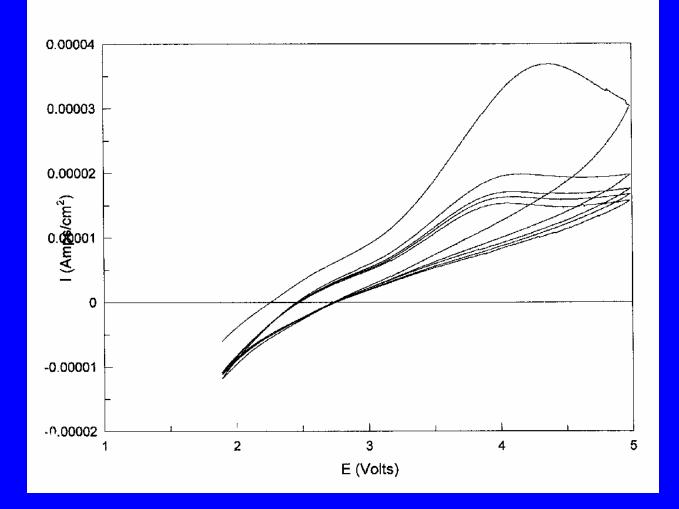

 Tube Furnace is required to create a reducing atmosphere

 5% Hydrogen 95% Argon in a tube furnace
 U₃O₈ + Li(OH)*H2O → Li₂UO₃

Analysis of Products

- Structure and Composition

 X-Ray Diffraction
 X-Ray Fluorescence
- Electrochemical Behavior
 - Cyclic Voltammetry
 - Impedance
 Spectroscopy



Cyclic Voltammetry Experiments

- Technique used for determine formal potential for a half reaction.
- Looking for redox potentials of electroactive species
- Linear potential sweep of working electrode with measurement of current.
- Plot of current vs. potential is cyclic voltammogram.

CV of UO₂ Electrode (Lithium metal RE, Lithium metal CE UO2 WE, 1 M Lithium Tetrafluorborate in 1:2 PC/DMC)

Literature CVs of Lithiated Metal Oxides – Rao, et. al.

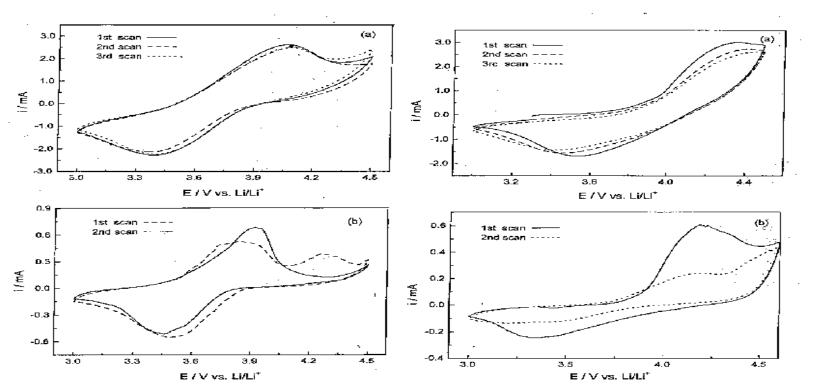
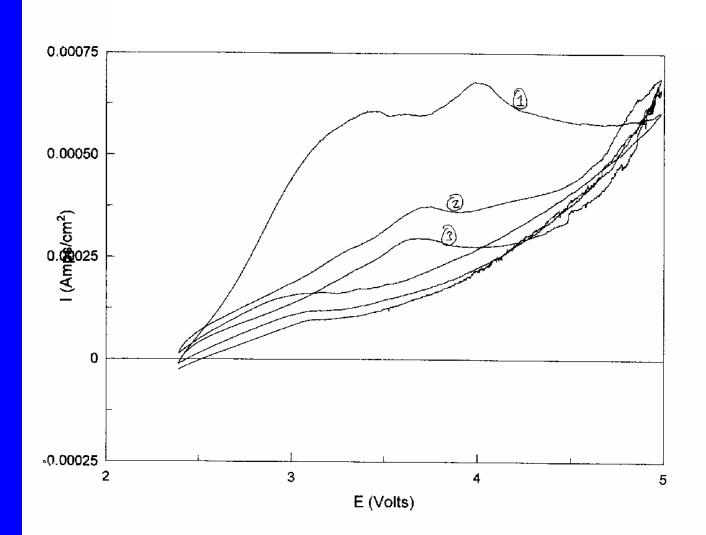



Fig. 3 Cyclic voltammograms of the $Li_{0.88}Ni_{1.12}O_2$ electrode at scan rates of a 0.1 mV s⁻¹ and b 0.01 mV s⁻¹, with 1 M LiClO₄ in PC as the electrolyte

Fig. 4 Cyclic voltammograms of the $LiCoO_2$ electrode at scan rates of a 0.1 mV s⁻¹ and b 0.01 mV s⁻¹, with 1 M $LiCiO_4$ in PC as the electrolyte

200

CV of Li_xU_yO_z Electrode

Summary

- Formulated new lithiated uranium compound Li_xU_yO_z that has more than 10 times the current output of uranium dioxide by itself.
 - Lithium became part of the structure (intercalated)
 - Seeing some intercalation under different cell configurations
- Uranium Dioxide behaves as a double layer capacitor Perhaps as a Supercapacitor
- Going to Dickens Recipe for Li₂UO₃

Future Work

- Use proven recipe for construction of Li₂UO₃ from Dickens while still trying reducing atmosphere method
- Add other metals and Metal oxides (e.g. Ni, Co, MnO₂,CoO₂) to the cathode formulation to enhance stability.