Development of Uranium Based Batteries

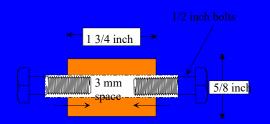
Paul Dunbar, Ph.D., P.E. Co-PI Rhonda Lee-Desautels, Ph.D.

> University of Kentucky Paducah Extension Campus

Project Goals

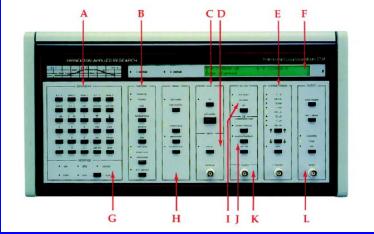
- Characterize uranium dioxide's electrochemical properties in various organic solvents/lithium salts commonly used in commercial battery industry.
- Construct cells in a glove box where the moisture and oxygen concentration will be controlled.
- Test the cells using common electrochemical methods to determine the reversibility of Uranium compounds in organic solvents with lithium salts
 - cyclic voltammetry
 - impedance spectroscopy
- If feasible this information will be used to construct a battery with uranium dioxide as the cathode.
- Manufacturing of uranium-lithium compounds in a muffle furnace to mirror the construction of manganese-lithium compounds commonly used in commercial batteries.

Collaborators and Consultants


- Applied Power International
 - Walter Tracinski, Lithium Battery Expert
- CAER
 - Dr. Stephen Lipka-Electrochemist/Material Scientist
- Dr. Bruce Hinds
 - Material Scientist that allows me to work with UO₂ powder

Literature Search

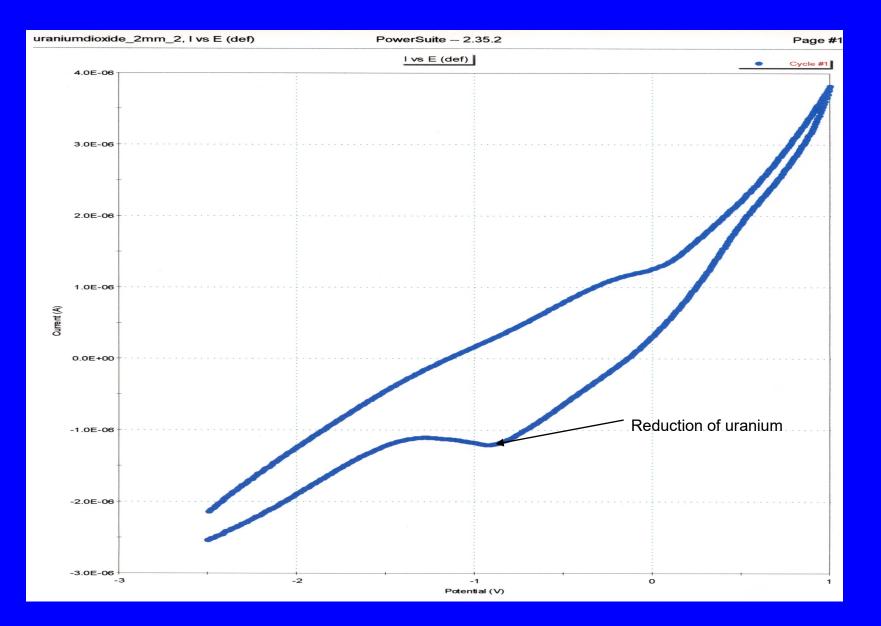
- UO₂ used as a cathode in a thermal battery constructed by the U.S Navy in 1965
- UO₂ behaves like a semi-conductor similar to MnO₂
 - Limited thickness 40,000 ohms of resistance at 2 mm in thickness (Miserque, et. al. Journal of Nuclear Materials (2001))
 - Primary batteries Li-MnO₂
- Cyclic Voltammetry experiments performed with UO₂ in aqueous corrosion studies shows reversibility . ("A Critical Evaluation of the Redox properties of Uranium, Neptunium, and Plutonium ions in Acidic Aqueous solutions", IUPAC, Pure and Applied Chemistry, (71), 1771-1807)


Experimental Work

- Constructed porous UO₂ Pellet for a working electrode in an electrochemical cell
- Natural UO₂ instead of depleted \$90 for 50 grams from Cerac Inc. in Milwaukee
 - PDVF as a binder 0.1 gram
 - graphite 0.1 gram
 - UO₂ 0.8 gram
 - Add to the "bolt press" heat to 130 C
 - Allow cool for 30 minutes

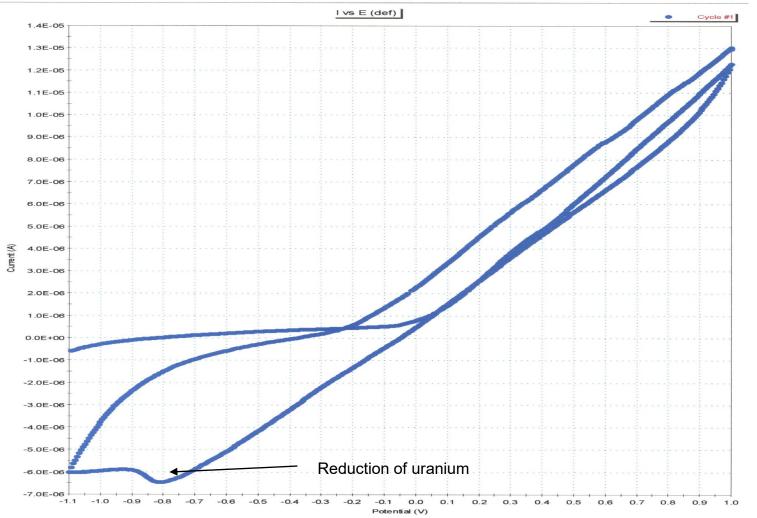
Experimental Equipment

- Perkin Elmer 273A
 Potentiostat and
 Solartron 1250 FRA
- Vac Atmospheres Glove Box to control atmosphere to construct a 3-cell electrode
 - 3-Cell electrode Lithium as RE, Lithium as CE, and UO_2 as working electrode



Glove Box

Cyclic Voltammetry



Cyclic Voltammetry 2

UO2_1.5mm_0.3M_-1.1V_DV, I vs E (def)

PowerSuite -- 2.35.2

Page #1

Status

- Waiting for some equipment
- June on-line

Acknowledgements

- Initial 1 year funding (\$40K) by ORNL (2002-2003) feasibility study
- Two years funding by KSEF (2003-2005)