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1.1 BACKGROUND 
 
Over the last several decades the release of toxic chemicals and other chemicals at 
numerous hazardous waste sites have taken a heavy toll on the nation’s environment.  
These releases have contaminated the air, soil, and groundwater.  Depending on the type 
of contaminant, these areas may not be safe for human habitation.  Sites that have been 
contaminated with a hazardous waste and pose a significant risk to human health or the 
environment can be classified as a Superfund site by the EPA (EPA 2007).  Those sites 
that pose the greatest environmental risk have been classified as national priority list 
(NPL) sites, and are eligible for federal clean-up dollars.   
 
Of the 15 active NPL sites in Kentucky, the Paducah Gaseous Diffusion Plant (PGDP) is 
contaminated the worst.  The PGDP is an active uranium enrichment facility located in 
approximately 10 miles west of Paducah, Kentucky and 3.5 miles south of the Ohio River 
(KRCEE 2007).  At the PGDP site, soil and groundwater has been contaminated with 
trichloroethylene (TCE).  TCE is a volatile organic chemical (VOC) and is part of a 
family of synthetic chlorinated hydrocarbons.  It has traditionally been manufactured as a 
solvent with its greatest appeal being a reduced potential for fire or explosion (Ensley, 
1991).  TCE was used as a solvent in the degreasing of metal parts at the PGDP site.   
 
A common method of TCE entering the environment is by leaching into the soil.  TCE 
has a tendency to stick to soil particles and remain there for long periods of time (ASTDR 
2007).  This will lead to TCE contaminating the groundwater and potentially nearby 
surface water. TCE does not last long in surface water and will evaporate quickly so it is 
commonly found in the air as a vapor (ATSDR 2007). 
 
The long term health effects associated with exposure to TCE are not yet completely 
understood.  However, the Environmental Protection Agency (EPA) has set a Maximum 
Contaminant Level goal (MCL) for TCE of 5 parts per billion (ppb) or 5 µg/L.  This is 
the value at which none of the potential health problems caused by TCE should occur.   
 
TCE has been determined to be “probably carcinogenic to humans” by the International 
Agency on Research for Cancer (IARC) (ATSDR 2001).  Therefore, it poses a potential 
health risk to the local population.  Drinking water with amounts over the MCL for an 
extended period of time could result in multiple health problems including liver and 
kidney damage (ATSDR 2007).  There is also some evidence suggesting that TCE can 
impair fetal development in pregnant women (ATSDR 2007).   
 
TCE at the PGDP site has leached into the soil and reached the groundwater.  Currently 
groundwater seepage is transporting the TCE towards the Ohio River.  TCE has been 
found in drinking water wells around the PGDP site which is how some local residents 
get their drinking water.  These wells have now been identified and the users given a 
municipal supply of drinking water (KRCEE 2007).  These residents have agreed to not 
drill any more wells, however future residents may still drill wells which could lead to 
possible human exposure to TCE contamination (KRCEE 2007).   
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To determine the future extent of the TCE contamination plume, a groundwater and 
solute transport model has been developed by the Department of Energy (DOE).  The 
model used to perform these calculations is MODFLOWT which is an enhanced 
groundwater transport model developed by the United States Geological Survey (USGS).  
MODFLOWT models groundwater movement as well as the transport of species that are 
subject to adsorption and decay by using a finite difference method (Duffield et al 2001). 
 
A significant limitation of MODFLOWT is that it requires large amounts of data.  This 
data can be difficult and expensive to obtain.  MODFLOWT also requires excessive 
computational time to perform one simulation.  It is desirable to have a model that can 
predict the spatial extent of the contaminant plume without as much required data and 
that does not require excessive computational times.   The purpose of this study is to 
develop an alternative model to MODFLOWT that can produce similar results for 
possible use in a companion management model.  The alternative model used in this 
study is an artificial neural network (ANN).   
 
 

1.2 AREA OF STUDY 
 
The area of study for this project is the Paducah Gaseous Diffusion Plant (PGDP) and 
surrounding areas that are enclosed by the DOE Water Policy Boundary (Figure 1).  The 
Water Policy Boundary was defined by DOE as the area that contains or has potential to 
contain properties overlying the contamination plume (KRCEE 2007).   The PGDP site is 
located on land owned by the DOE.  Other properties in the water policy boundary are 
owned by the Tennessee Valley Authority (TVA), the West Kentucky Wildlife 
Management Area (WKWMA), and private owners.  This report is only concerned with 
private property that is impacted by the TCE plume.   
 
There has been seepage of TCE from sources associated with the PGDP site into the 
underlying aquifer and this has contaminated the groundwater and resulted in TCE 
concentrations significantly higher than the MCL.  This contaminated groundwater has 
the potential to cause health risk to local citizens, especially those who get drinking water 
from wells.  The extent of this plume can be used to estimate the number of private 
properties that are impacted by the groundwater contamination.   
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Figure 1: Layout of the PGDP and Surrounding Areas Including the Modeled Existing TCE Plume 

 
Since 1997 a pump-and-treat (P&T) operation has been used to try and contain the spread 
of the existing TCE plume.  Extraction wells placed around the site extract groundwater 
to the surface where it is treated by air-stripping to remove the TCE.  The location of the 
P&T wells currently in operation is shown in Figure 2.  The theoretical P&T wells shown 
in the figure represent potential wells that could be added to the system to increase the 
removal of contaminated groundwater.  Observations wells have been drilled to measure 
TCE concentrations down gradient of the plant.   
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Figure 2: Location of Wells in PGDP Site used in ANN Models 
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1.3 MODEL DESCRIPTION 
 

 1.3.1 DESCRIPTION OF MODFLOWT  
 
The original model developed by DOE to determine the extent of the contaminant plume 
was MODFLOWT.  MODFLOWT models groundwater movement as well as the 
transport of species that are subject to adsorption and decay (Duffield et al 2001). 
MODFLOWT uses a finite difference method to determine the numerical solution of two 
partial differential equations (PDE) based on the conservation of momentum and mass.  
The first partial differential equation describes the three-dimensional movement of 
groundwater through a porous medium assuming a constant density and isothermal 
conditions and is described by (Duffield et al 2001):   
 

t
hSW

x
hK

x s
j

ij
i ∂

∂
=−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

 Equation 1 

 
where xi and xj are the principal coordinate axes of the system which are assumed to be 
parallel to the major axes of the hydraulic conductivity (L), Kij are the values of the 
hydraulic conductivity tensor along the principal coordinate axes (LT-1), h is the 
hydraulic head (L), W is the volumetric flux per unit volume (T-1), Ss is the specific 
storage of the porous material (L-1), and t is time.   
 
The second partial differential equation used describes the three dimensional movement 
of a miscible species in groundwater.  This equation is described by (Duffield et al 2001) 
and is:  
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where C is the concentration of the solute in the groundwater (ML-3), ne is effective 
porosity, Dij are values of the hydrodynamic dispersion tensor (L2T-1), R is a retardation 
factor, C’ is a concentration of a source of water (ML-3), W+/W- are a volumetric flux per 
unit volume of source/sink of water (T-1), and λ is a first order decay constant (T-1).  
Since TCE is subject to adsorption and decay, both the retardation factor and the decay 
constant will play a role in the movement of the TCE plume.  The retardation factor for 
TCE is based on a linear isotherm and is equivalent to the ratio of the velocity of the TCE 
to the velocity of the groundwater.  The decay constant is the rate at which the TCE will 
biodegrade.   
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1.3.2 THE FINITE DIFFERENCE METHOD 
 
As stated earlier, MODFLOWT uses a finite difference method to calculate head and 
constituent concentrations.  The actual values of head and concentration are calculated by 
solving a system of simultaneous linear finite difference equations which are used to 
represent the PDEs.   Figure 3 shows a typical setup for a 3-dimensional finite difference 
grid.  The index i is the row indicator, j is the column indicator and k is the layer 
indicator.  MODFLOWT uses a block-centered formulation in which the model solves 
for the value of the state variable at the center of the cell.  For a more detailed description 
of the finite difference method used in MODFLOWT, please see Duffield et al (2001).   
 

 
Figure 3: Three-Dimensional Finite Difference Grid 

 

1.3.3 STRESS PERIODS 
 
MODFLOWT accommodates changes in system boundary conditions (e.g. different 
pumping rates, different source concentrations, etc.) through the use of different “stress 
periods.”  A stress period is a user-defined length of time in which all conditions in the 
model remain constant.  At the end of one stress period, a new stress period will begin 
using the new conditions, but the input data will be the output from the previous stress 
period.   
 
The MODFLOWT model used in this study contains two stress periods.  The first stress 
period simulates the existing conditions at the PGDP site which is a pump and treat 
operation.  This began in 1997 and continues until the present.  The second stress period 
is used to simulate the new treatment process implemented into the model.  The length of 
the second stress period varies depending on the particular model application.   
 
Within each stress period, state variables (such as groundwater elevation and constituent 
concentration) are determined at different time steps.  Each time period is denoted by the 
number of days at which the calculations were performed.  The total number of time 
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periods that are used is determined internally by MODFLOWT in order to ensure 
numerical stability when performing the associated finite difference calculations. 
 
It is typical to extract out results from a given number of years in the future (i.e. 50 years 
or 18,250 days).  However, there may not be an exact time period of 18,250 days in 
MODFLOWT.  In this case, the time period that was closest to the number of days of the 
future year was selected. 
 
 

1.3.4 DESCRIPTION OF GROUNDWATER VISTAS 
 

The software interface used to run MODFLOWT was Groundwater Vistas (GV).  
Groundwater Vistas is a model interface that incorporates multiple groundwater models 
into one software program.  Through use of graphical analysis tools it is easy to setup, 
edit, and analyze model results.  GV uses a mesh grid system which breaks the model 
into cells.  A cell is a space in the finite difference grid that has consistent properties 
throughout and serves as a point of calculation.   Each cell is located by a row, column, 
and layer number.  All cells that have the same distinct set of properties are grouped into 
a zone.  This feature gives the user the ability to adjust a parameter in all cells within a 
zone by use of a database option instead of changing each individual cell.  The option to 
make changes cell by cell is also available.  It also allows the user to see the model 
design in a plan and layout view. 
 
GV allows for easy editing of boundary conditions, soil properties, hydrologic properties 
and contaminant properties.  GV allows the user to add multiple boundary conditions 
such as constant head/concentration, well, river, stream, no flow, wall or lake.  Soil 
properties include hydraulic conductivity, porosity, initial contaminant concentrations, 
and diffusion.  Hydrologic conditions are recharge and evapotranspiration.  Contaminant 
properties are chemical reaction rates which includes the distribution coefficient, bulk 
density, and half-life.   
 
Since GV is model independent, users only need to learn the interface and not the actual 
models that it supports.  The type of model used in GV can simply be changed by 
selecting the desired model from the Model menu and adding additional input if required. 
The version of GV used supports the following models: MODFLOW, MODPATH, 
MT3D, MODFLOWT, as well as a few others.  For a more detailed description of GV 
refer to the user manual (Rumbaugh and Rumbaugh 2004).   
 
 

1.4 MODEL VERIFICATION 
 
The baseline version of the MODFLOWT model was obtained from DOE.  Previous 
study results from the model were compared to those obtained from previous DOE 
simulations.  The model results were consistent with those of the DOE runs, thus 
validating the model (Lingireddy et al 2007). 
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1.5 SOURCES 
 
The major sources of TCE from the PGDP are separated into two geologic zones, the 
Upper Continental Recharge System (UCRS) zone and the Regional Gravel Aquifer 
(RGA) zone (Figure 4).  The UCRS is averages about 50 feet in thickness and serves as 
the main pathway for groundwater flow in the vertical direction from the surface through 
the UCRS to the RGA (KRCEE 2007).  The RGA is made up of sand and gravel deposits 
and averages 30 feet in thickness but can be up to 50 feet thick (KRCEE 2007).  The 
RGA serves as the primary path of contaminant migration in the lateral direction 
(KRCEE 2007).  A much smaller hydraulic conductivity of the geological formation 
under the RGA (the McNairy Formation) restricts flow from moving further downward.  
Hence the RGA is the main path of groundwater movement and solute transport.   
 

 
Figure 4: Geologic Formations Underlying the PGDP (DOE 2005) 
 
 
Prior DOE studies have shown there to be seven total TCE sources in the UCRS zone 
(DOE 2001; DOE 2006) (Figure 5).  These sources were input to the model as initial 
concentrations (KRCEE 2007).  A secondary source of TCE is located in the RGA 
associated with the C-400 Building.  This building is located within the PGDP and is one 
of the main sources of TCE.  This source was modeled by assigning initial concentrations 
to 18 cells in the model beneath the C-400 building.  Figure 6 gives details in the 
concentrations of TCE in the RGA zone around the C-400 Building.  The actual values 
that are used in the model for each cell are shown in the figure as well.   
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Figure 5: Location of the Seven Primary UCRS Sources 
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Figure 6: Spatial Distribution of Initial TCE Concentrations in the RGA Under the C400 Building 

 
 

1.6 SUMMARY 
 
An alternative model that can be coupled with an optimization method will be developed 
based on artificial neural network technology.  This model will serve as an alternative to 
MODFLOWT which models groundwater movement as well as contaminant transport for 
species subject to adsorption and decay.  MODFLOWT has currently been used to model 
the movement of a TCE plume in the underlying aquifer of the Paducah Gaseous 
Diffusion Plant.   
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2.1 PURPOSE OF THE ARTIFICIAL NEURAL NETWORK 
 
The purpose of this particular artificial neural network model was to forecast TCE 
concentrations as accurately as the MODFLOWT model so that it can be incorporated 
with an optimization technique to form a management model.  An optimization model 
requires numerous evaluations of the objective function and this is not feasible with a 
MODFLOWT model that can take hours for one simulation.  A properly trained ANN 
model could give results of the objective function in seconds.   
 
In order for the ANN model applicable to this type of application, it must require less 
input and take less time to finish than the MODFLOWT model.  Therefore, inputs will be 
limited to the pumping rates at the extraction wells used in the P&T process.  Also, 
multiple ANN models with varying number of inputs will be developed to determine the 
optimal number of inputs.  This will give the model that still produces satisfactory results 
yet requires the minimal number of inputs.  Outputs will be TCE concentrations in two 
observations wells at four future times.  These years will be 2009, 2015, 2021, and 2027.     
 
 

2.2 ARTIFICIAL NEURAL NETWORKS 
 
Artificial neural networks are an inductive modeling technique used in many fields of 
research.  ANNs are popularly applied in forecasting, pattern recognition, and 
classification problems.  An ANN serves as an alternative to linear and non-linear 
regression and is very useful when the actual physical relationship between two or more 
variables is unknown. 
 
Each ANN model will be different and will depend on the data available to train with, the 
desired output, and the architecture of the model used.  The architecture of the ANN 
model is dependent highly on the type of problem being considered (Maier and Dandy, 
1999).  Numerous studies have shown that the best setup for an ANN consists on one 
input, one hidden, and one output layer (see Figure 7).  However this is not always the 
case, as some functions may prove to be difficult to approximate with one hidden layer 
thus requiring an additional layer of hidden nodes (Cheng and Titterington, 1994).  The 
number of input nodes is fixed to the number of model inputs while the number of output 
nodes is fixed to the number of model outputs.  The number of nodes in the hidden layer 
is critical since it will determine the number of connection weights (Maier and Dandy 
1999).   
 
A supervised training approach was used for this study.  Supervised training is where 
inputs and known outputs are required to perform the training of the model.  During the 
training process the ANN determines the underlying causal relationship between the 
input and output data.  The goal of the training process is to minimize the error between 
the observed and the predicted output of the model.   
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Figure 7: General ANN Model Architecture 
 
 
A feed-forward multi-layered perceptron (MLP) was used as the model architecture.  In 
this architecture neurons are arranged in layers (see Figure 7).  Input layer neurons are 
buffers that normalize the incoming data.  For this study normalization was based on the 
greatest value of the input data resulting in values that ranged from 0 to 1.  The hidden 
layer and output layer neurons are defined as activation functions.  An activation function 
will transform the input and pass it to the subsequent layer and will be discussed in 
greater detail in a later section.  The result of the output neuron will be the output of the 
model to the user.   
 
Neurons in different layers are interconnected by weights (see Figure 7).  The 
information is passed from left to right (i.e. input to hidden layer, hidden to output layer).   
The trained knowledge of the model is stored in these weights.   Equation 3 shows how 
the trained knowledge of the weights as it is applied to the inputs.   
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where xi is the input from the ith neuron in the preceding layer and w1i is the weight 
interconnecting the ith neuron in the preceding layer to neuron 1 in the hidden layer (see 
Figure 7).  The netj term is the weighted sum and this information is then transformed by 
the activation function as shown in Equation 4.   
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where λ is a learning rate that determines how much the function will transform.  The 
interconnecting weights are redefined by the training algorithm and represent the 
knowledge gained by the ANN model.  A new set of inputs can then be used and the 
process repeated.   
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2.1.1 TRAINING, TESTING, AND VALIDATION 
 
The more datasets that are available to train and validate the model, the more accurate the 
model will be.  After training has finished a model needs to be validated to ensure that it 
is a robust model and that it is not over training the data.  Validation needs to occur with 
a separate group of datasets that has not been used in training or testing process (Maier 
and Dandy 1999).   
 
Caution needs to be taken to prevent memorization of the training datasets which will 
result in an inadequate model.  Memorization of data describes the condition whereby too 
many connection weights have allowed overtraining of the data, which is where the 
model has learned the idiosyncrasies of the training set, thus the model loses its ability to 
generalize (Maier and Dandy 1999).  When memorization occurs, the model has been 
over-trained and has captured noise from the dataset.   
 
The most standard way to prevent this from occurring is to divide the datasets into three 
sub-sets: a training set, a testing set, and a validation set.  Literature typically suggests 
division of data into training/testing and validation of 80% vs. 20% or 70% vs. 30% 
(Maier and Dandy 1999).  The training and testing data is then further divided by the 
same percentage as the previous division.  Each sub-set of data must be representative of 
the entire dataset to ensure good training (Maier and Dandy 1999).  The training set is 
used to train the ANN model.  The testing set should not be used in training so that the 
data is new to the model.  It can then be simulated in the model and the error results from 
training and testing can be compared.  If the training and testing errors are significantly 
different, then memorization most probably took place during training and a better model 
will need to be developed.  Memorization of the model can be detected by a continual 
reduction in the training set error while the testing set error remains the same or becomes 
worse (Maier and Dandy 1999).   
 

2.1.2 ACTIVATION FUNCTIONS 
 
Types of activation functions commonly used are logistic sigmoid (unipolar activation) 
with an output variation of 0 to 1, hyperbolic tangent sigmoid (bipolar activation) with an 
output variation of -1 to 1, and linear that only has values of 0 and 1.  Maier and Dandy 
(1999) found that other activation functions may be used as long as they are 
differentiable.  Normalization of the data must take place to ensure that values of netj stay 
with the range of the function.  The unipolar activation function was used for the ANN 
models in this study.  The graph of this function is shown in Figure 8.   
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Figure 8: Graph of the Unipolar Activation Function 

 
 

2.1.3 TRAINING PROCESS 
 
In the process of training the network, the networks weights are systematically adjusted 
to minimize the difference between the observed and predicted data.  In this study, a back 
propagation algorithm (BPA) was used, in which the error associated with each 
observation is back propagated through each path and the associated weights are adjusted 
accordingly to minimize the error.  The mathematical equivalent of this is a steepest 
descent algorithm.  In this training algorithm, the weights of the model are adjusted after 
each dataset is processed through the model.  An epoch is known as one complete run of 
the datasets through the ANN model.  Multiple epochs are performed in the model to 
properly obtain all the knowledge.    
 
This process is dependent upon two parameters: the learning rate and the momentum 
parameter.  In this algorithm, the learning rate will dictate the magnitude of the weight 
changes.  Values range from 0 to 1 and choosing a learning rate for the ANN model will 
have a significant impact on the results.  Larger learning rates will move the algorithm 
too quickly and possibly skip the optimal solution.  Small learning rates increase the 
computational time of the model.  The momentum parameter is meant to improve the 
BPA by allowing for a larger learning rate that will result in faster convergence of the 
model but will minimize the tendency to bypass the optimal solution (Rumelhart et al., 
1986). 
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2.5 ANN MODELING SOFTWARE 
 
The ANN training and simulation was done by using Neurosort 3.0, a neural network 
software program specially designed for water and environmental engineering.  
Neurosort 3.0 was developed at the University of Kentucky and has been successfully 
applied to numerous applications.  It allows the user to change parameters and model 
architecture with an easy to use graphic interface. 
 
 

2.3 DATASETS 
 
The datasets for the ANN model were generated using the MODFLOWT model by 
adjusting the pumping rates of the extraction wells.  As of now, the PGDP site has six 
existing extraction wells working in the pump and treat process.  Twelve new theoretical 
extraction wells were added to the system to test the impact of future expansion of the 
pump and treat.  (See Figure 2).  The locations of these wells were selected so that they 
would cover the area of the initial TCE plume and remain near the PGDP boundary.  All 
extraction wells are located in the third layer of the model.  Forty-four MODFLOWT 
model runs were made with different pumping rates so there are 44 datasets to use in the 
ANN model.   
 

2.3.1 INPUTS 
 
There were eighteen inputs available to design the ANN models.  However, one of the 
goals of the ANN model is to minimize the number of inputs required.  Therefore a 
correlation analysis was made between the pumping rates at each extraction well and the 
TCE concentration extracted from MODFLOWT at each observation well.  The initial 
ANN model developed used all eighteen available inputs.  This gave a baseline values to 
compare the other models against.  The second model consisted of fifteen inputs.  For 
additional ANN models, the two lowest correlating extraction wells were removed.  The 
minimum number of inputs to any ANN was five.  This process was done for two 
observation wells.  Table 1 shows the specific extraction wells that were used in each 
ANN model.   
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Table 1: Extraction Wells used in ANN Models Created to Determine Optimal Number of Inputs 
Observatio Well Bayou-1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
18 Wells X X X X X X X X X X X X X X X X X X
15 Wells X X X X X X X X X X X X X X X
13 Wells X X X X X X X X X X X X X
11 Wells X X X X X X X X X X X
9 Wells X X X X X X X X X
7 Wells X X X X X X X
5  Wells X X X X X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
18 Wells X X X X X X X X X X X X X X X X X X
15 Wells X X X X X X X X X X X X X X X
13 Wells X X X X X X X X X X X X X
11 Wells X X X X X X X X X X X
9 Wells X X X X X X X X X
7 Wells X X X X X X X
5 Wells X X X X X

N
um

be
r o

f A
N

N
 

In
pu

ts

Extraction Well 

N
um

be
r o

f A
N

N
 

In
pu

ts

Observation Well 5
Extraction Well 

 

2.3.2 OUTPUTS 
 
The ANN outputs were TCE concentrations in observation wells located inside the water 
policy boundary.  Currently there are 14 observation wells inside the water policy 
boundary.  Fifteen theoretical observation wells were added and placed such that they 
would cover representative sections inside the boundary.  The four outputs of the models 
will be concentrations at 2009, 2015, 2021, and 2027. 
 
Initially ten observation wells were chosen throughout the PGDP site.  To limit the extent 
of this project, only two observation wells were analyzed.  Both these wells had 
significant change in concentrations with change in the pumping rates so they are a good 
indicator of the ANN model potential.  Observation well Bayou-1 (OW-B1) and 
Observation Well 5 (OW-5) were the two selected.  OW-B1 is an existing observation 
well and OW-5 is a theoretical observation well to the model 
 

2.3.3 SIMULATIONS 
 
A total of 44 pumping simulations were run using MODFLOWT resulting in 44 datasets 
to be used in training and validation of the ANN model (Table 2).  Each simulation 
consisted of only the theoretical wells, only the existing wells, or a combination of the 
both.  The pumping rates for the existing extraction wells are shown in Table 3.  The 
pumping rates for the theoretical extraction wells were chosen to be 0, 50, or 100 gpm.  
These values are a good representation of the pumping rates of the existing extraction 
wells used in the P&T process.   
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The 44 datasets were randomly sorted before being broken down into the training/testing 
and validation sets.  This will prevent the model from being over calibrated.    From this 
randomized list of datasets, 26 sets were used for training, 9 sets for testing, and 9 sets for 
validation. 
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Table 2: Pumping Simulations for each Dataset 

Simulation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 100 100 100 100 100 100 100 100 100 100 100 100 0 0 0 0 0 0
2 50 50 50 50 50 50 50 50 50 50 50 50 0 0 0 0 0 0
3 0 0 0 100 100 100 100 100 100 100 100 100 0 0 0 0 0 0
4 100 100 100 0 0 0 100 100 100 100 100 100 0 0 0 0 0 0
5 100 100 100 100 100 100 0 0 0 100 100 100 0 0 0 0 0 0
6 100 100 100 100 100 100 100 100 100 0 0 0 0 0 0 0 0 0
7 0 0 0 50 50 50 50 50 50 50 50 50 0 0 0 0 0 0
8 50 50 50 0 0 0 50 50 50 50 50 50 0 0 0 0 0 0
9 50 50 50 50 50 50 0 0 0 50 50 50 0 0 0 0 0 0

10 50 50 50 50 50 50 50 50 50 0 0 0 0 0 0 0 0 0
11 0 100 100 0 100 100 0 100 100 0 100 100 0 0 0 0 0 0
12 100 0 100 100 0 100 100 0 100 100 0 100 0 0 0 0 0 0
13 100 100 0 100 100 0 100 100 0 100 100 0 0 0 0 0 0 0
14 0 50 50 0 50 50 0 50 50 0 50 50 0 0 0 0 0 0
15 50 0 50 50 0 50 50 0 50 50 0 50 0 0 0 0 0 0
16 50 50 0 50 50 0 50 50 0 50 50 0 0 0 0 0 0 0
17 100 100 100 100 100 100 50 50 50 50 50 50 0 0 0 0 0 0
18 100 100 100 50 50 50 100 100 100 50 50 50 0 0 0 0 0 0
19 100 100 100 50 50 50 50 50 50 100 100 100 0 0 0 0 0 0
20 50 50 50 100 100 100 100 100 100 50 50 50 0 0 0 0 0 0
21 50 50 50 100 100 100 100 50 50 100 100 100 0 0 0 0 0 0
22 50 50 50 50 50 50 100 100 100 100 100 100 0 0 0 0 0 0
23 100 100 50 100 100 50 100 100 50 100 100 50 0 0 0 0 0 0
24 100 50 100 100 50 100 100 50 100 100 50 100 0 0 0 0 0 0
25 50 100 100 50 100 100 50 100 100 50 100 100 0 0 0 0 0 0
26 100 50 50 100 50 50 100 50 50 100 50 50 0 0 0 0 0 0
27 50 100 50 50 100 50 50 100 50 50 100 50 0 0 0 0 0 0
28 50 50 100 50 50 100 50 50 100 50 50 100 0 0 0 0 0 0
29 100 0 100 0 100 0 0 100 0 100 0 100 0 0 0 0 0 0
30 50 0 50 0 50 0 0 50 0 50 0 50 0 0 0 0 0 0
31 100 100 100 100 100 100 100 100 100 100 100 100 48 45 60 55 100 80
32 50 50 50 50 50 50 50 50 50 50 50 50 48 45 60 55 100 80
33 0 0 0 0 0 0 0 0 0 0 0 0 48 45 60 55 100 80
34 100 100 100 100 100 100 100 100 100 100 100 100 48 45 60 55 0 0
35 100 100 100 100 100 100 100 100 100 100 100 100 48 45 0 0 100 80
36 50 50 50 50 50 50 50 50 50 50 50 50 0 0 60 55 100 80
37 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100
38 0 0 0 0 0 0 0 0 0 0 0 0 50 50 50 50 50 50
39 0 0 0 0 0 0 0 0 0 0 0 0 50 100 50 100 50 100
40 0 0 0 0 0 0 0 0 0 0 0 0 50 50 100 100 50 50
41 0 0 0 0 0 0 0 0 0 0 0 0 100 100 50 50 100 100
42 0 0 100 0 0 100 0 100 0 100 0 0 48 45 60 55 100 80
43 0 0 100 0 0 100 0 100 0 100 0 0 100 100 100 100 100 100
44 0 0 100 0 0 100 0 100 0 100 0 0 50 50 50 50 50 50

Theoretical Extraction Wells (gpm) Existing Extraction Wells (gpm)
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Table 3: Pumping Rates at Existing Extraction Wells (KRCEE 2007) 

Extraction Well Existing Pumping Rate (gpm)
Well 13 48
Well 14 45
Well 15 60
Well 16 55
Well 17 100
Well 18 80  

 
 
Each MODFLOWT model run consisted of two stress periods.  The first stress period 
consisted of 10 years starting in 1997 in which there was no pumping in any wells 
(theoretical or existing).  The second stress period started in 2007 and consisted of 20 
years in which the pumping simulations were active the entire time.   
 
 

2.4 ARCHITECHTURE USED 
 
For the solute transport problem, the architecture and parameters used are shown in 
Figure 9 and Table 4 respectively.  The Neurosort software also requires that an initial set 
of weights selected and the total number of iterations be specified.  Neurosort offers ten 
default initial weights sets to choose from.  The initial weight set chosen was set 1 and 
number of iterations was 10000.  This setup and parameter listing were determined by a 
trial and error procedure.   
 

 
Figure 9: Artificial Neural Network (shown with 18 inputs) for One Observation Well 
 

 19



 
Table 4: ANN Parameter Values 

Parameter
Hidden Nodes 3
Training/Testing 3/1
Learning Rate 0.1
Momentum Parameter 0.4  

 
 
 

2.6 RESULTS 
 
An ANN model was created for each number of inputs given in Table 1.  The accuracy of 
each ANN model was assessed based on the coefficient of determination value (R2 value) 
of the predicted versus observed concentrations.  Table 5 shows the R2 values of each 
ANN model for both observation wells.  The R2 value is an average of all four output 
years for both the training and validation set.  R2 is based on Equation 5.   
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where p is the predicted outputs by the ANN model and o is the observed outputs from 
the MODFLOWT model.   
 
Each ANN model is labeled by the observation well (i.e. OW-B1) and then by the 
number of inputs for that particular model (i.e. 5 for five inputs).  Based on the R2 values 
for the validation simulations it can be seen that for OW-B1, model OWB1-15 performed 
the best and for OW-5, model OW5-18 performed the best.  The forecasted TCE 
concentrations for the validation simulations from these two models are the results 
presented here.  These are shown in Figure 10 for OW-B1 and Figure 11 for OW-5. 
 
 

Table 5: R2 Values from ANN Models for Observation Wells Bayou-1 and 5 

Model Name
Number of 

Inputs R2 Model Name
Number of 

Inputs R2

OWB1-18 18 0.8944 OW5-18 18 0.9060
OWB1-15 15 0.9095 OW5-15 15 0.8820
OWB1-13 13 0.9065 OW5-13 13 0.8179
OWB1-11 11 0.8830 OW5-11 11 0.8207
OWB1-9 9 0.7938 OW5-9 9 0.8155
OWB1-7 7 0.7618 OW5-7 7 0.5947
OWB1-5 5 0.1182 OW5-5 5 0.5977

O.W. 5O.W. Bayou-1
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Figure 10: Predicted and Observed TCE Concentrations in OW Bayou-1 based on ANN model 

OWB1-15 
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Figure 10: Predicted and Observed TCE Concentrations in OW Bayou-1 based on ANN model 

OWB1-15 
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Figure 11: Predicted and Observed TCE Concentrations in OW 5 based on ANN model OW5-15 
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Figure 11: Predicted and Observed TCE Concentrations in OW 5 based on ANN model OW5-15
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2.7 DISCUSSION 

 
Based on the R2 values for the particular year, both models performed well in predicting 
the TCE concentrations at their respective observation wells.  With the exception of a few 
outliers, it appears that the observed and predicted data was a good match.  Table 6 give 
the individual R2 values for the ANN models presented.   

 
Table 6: R2 Values from ANN Models for Individual Years 

OWB1 OW5
2009 0.8391 0.9775
2015 0.9943 0.9752
2021 0.8674 0.8699
2027 0.9371 0.8016

Observation WellYear

 
 
From Table 5, it can be seen that by dropping a substantial number of inputs a model with 
an acceptable R2 value could still be created.  Both models could have only nine inputs 
and still produce an R2 of approximately 0.80.   
 
Figures 12 and 13 show scatter plots of observed versus predicted output data for both 
observation wells.  Based on these scatter plots, neither model appears to be biased since 
the deviation of residuals is fairly uniformed distributed about a 45º.  The models are not 
exact when forecasting the concentrations, but they are accurate enough to help in 
identifying potentially impacted properties.  If the extraction well locations are known 
and pumping rates remain constant, an ANN model could help determine areas of 
possible health risk.   
 

2.7.1 LIMITATIONS 
 
The developed ANN has some limitations.  Since the wells used as input (extraction) and 
output (observation) did not change position, the ANN model will only be valid for wells 
in these same locations.  Hence if 18 different extraction wells were used at different 
geographic locations, a new ANN would need to be developed.  However, once a well 
location has been determined, it can be considered permanent since it is unlikely that they 
will be moved from one place to another.  Thus, an ANN could be developed once these 
permanent locations are known.   
 
The ANN is also only valid for the observation well from which the training data came.  
So if there are five observations wells, five different ANN models would need to be 
developed.  Multiple observations wells were attempted in one ANN model, but did not 
give satisfactory results. 
 
This model does not reflect on changes to the physical characteristics of the area of study.  
Changes in recharge, leakage, source concentrations etc. would require additional inputs 
to the model.  For this model development, these parameters were not considered because 
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they remained constant for all the MODFLOWT runs which were used for data 
generation.  These parameters were calculated in the MODFLOWT model based on vast 
field experimentations.  Again, for the purpose of this report the model inputs were 
limited strictly to the pumping rates of the extraction wells.   
 
Another limitation to this model is that the pumping rates in the extraction wells were set 
at a few specific values.  In reality, the likelihood of all wells pumping at one of these 
specific rates is not very likely.  Each well would have its own specific rate depending on 
its size and aquifer properties at that location such as hydraulic conductivity, storage 
coefficient, etc.  
 

2.7.2 FUTURE INVESTIGATIONS 
 
One area to further investigate is to develop a more general ANN model by incorporating 
different locations of wells.  This type of model could help in determining the best 
placement of an extraction well, which would minimize the extent of the contaminant 
plume.  An extension of this would be to incorporate these ANNs with an optimization 
technique to optimize the pumping strategy to reduce concentrations at a point in the 
study area to an acceptable concentration. 
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Figure 12: Predicted versus Observed TCE concentrations based on Model OWB1-15 
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Figure 12: Predicted versus Observed TCE concentrations based on Model OWB1-15 
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Figure 13: Predicted versus Observed TCE concentrations based on Model OW5-18 
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Figure 143: Predicted versus Observed TCE concentrations based on Model OW5-18
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