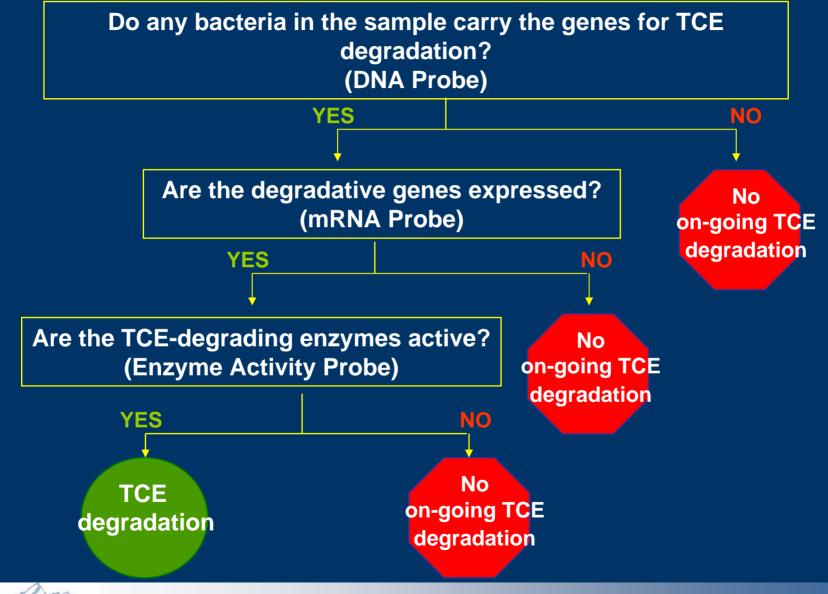

### **Enzyme Activity Probes**

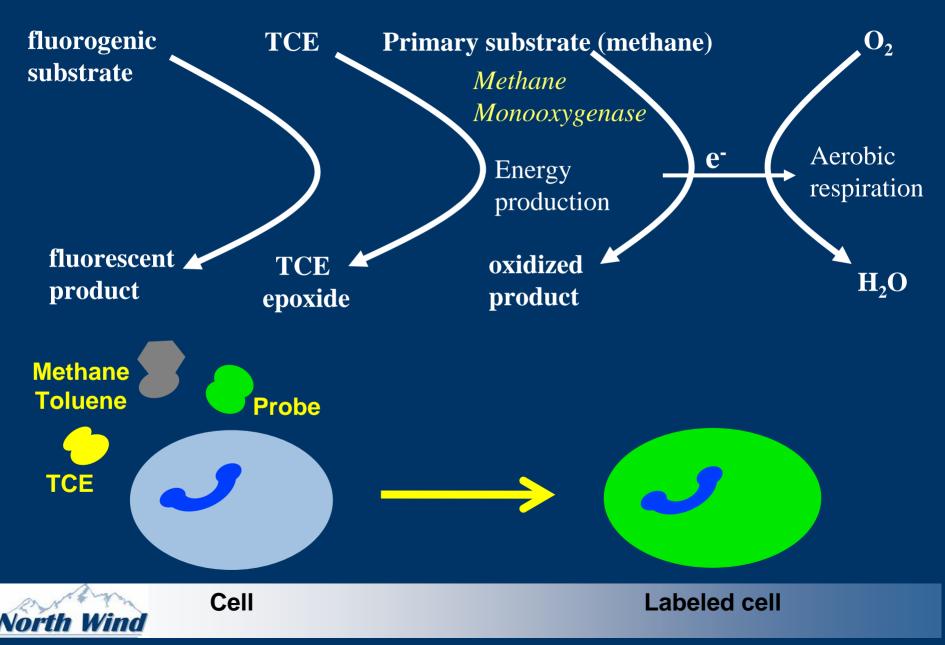


M. Hope Lee




### **Biodegradation / Bioremediation of TCE**

- TCE can be degraded by bacteria
- Several different mechanisms, including anaerobic reductive dechlorination and *aerobic cometabolic oxidation*
- Bioremediation technology can be based on microbial degradation capacity
- Tools are *needed* to detect appropriate enzyme systems and assess their *activity* in the environment




### Why are Enzyme Probes Important?

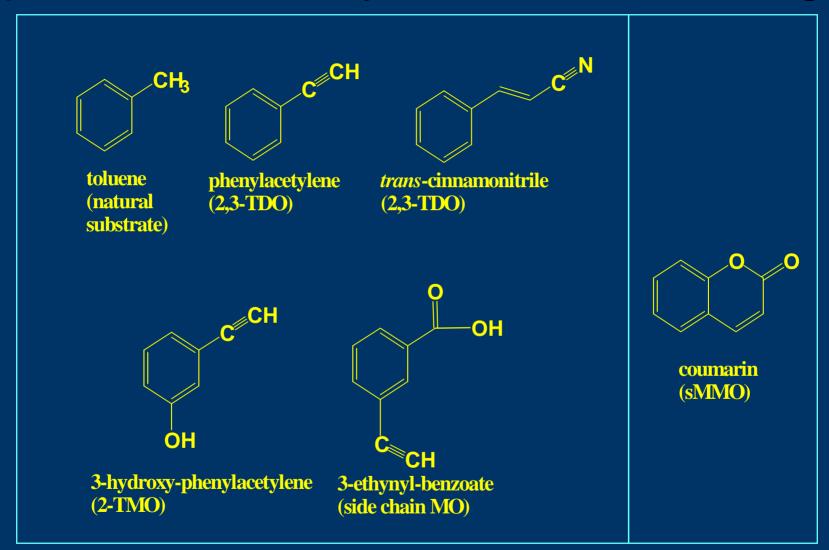




### How do enzyme activity probes work?

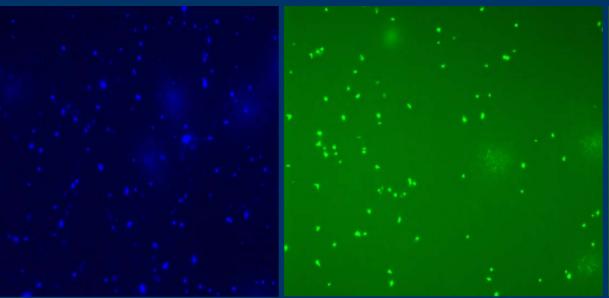


# Common Myths, dismissed...


- Early studies (1980-mid-90s) determined that:
- (a) Cometabolism requires a natural substrate induction (methane, phenol, other aromatic)
- (b) Cometabolic degradation of TCE results in TCE epoxides and/or oxygen radicals which inactivate the active site of the oxygenase
- (c) Growth on non-inducing substrates will result in an enzyme that will not cometabolize chlorinated solvents (TCE)

- Recent studies have shown that under natural conditions:
- (a) Non-aromatic substrates can induce activity (naturally occurring phenolic compounds e.g. humics); TCE itself can induce cometabolic activity
- (b) Studies have shown that TCE epoxides do not cause significant decreases in TCE cometabolizing abilities or rates
- (c) Growth on non-inducing substrates results in TCE degradation




Heald and Jenkins, 1994; McClay et al., 1995; Leahy et al., 1996; Shingleton et al., 1998; Ryoo et al., 2000, 2001; Lee et al., 2002; Yeager et al., 2004

#### **Representative Enzyme Probes and Target**





### Enzyme Activity Probes: groundwater



Total bacterial cell count

Positive probe response

Negative probe response

- 1. Serve as alternative substrates for TCE cometabolizing enzymes
- 2. Are transformed by enzymes into a quantifiable product, i.e. direct evidence of activity.
- 3. Represent one of only a few technologies that have the capability of measuring *activity in situ*



#### **Control Assays**

**Purpose:** To ensure that the measured degradation is attributable to the organisms of interest; verify that either the sMMO or toluene enzymes are responsible for any observed positive response to the assay.

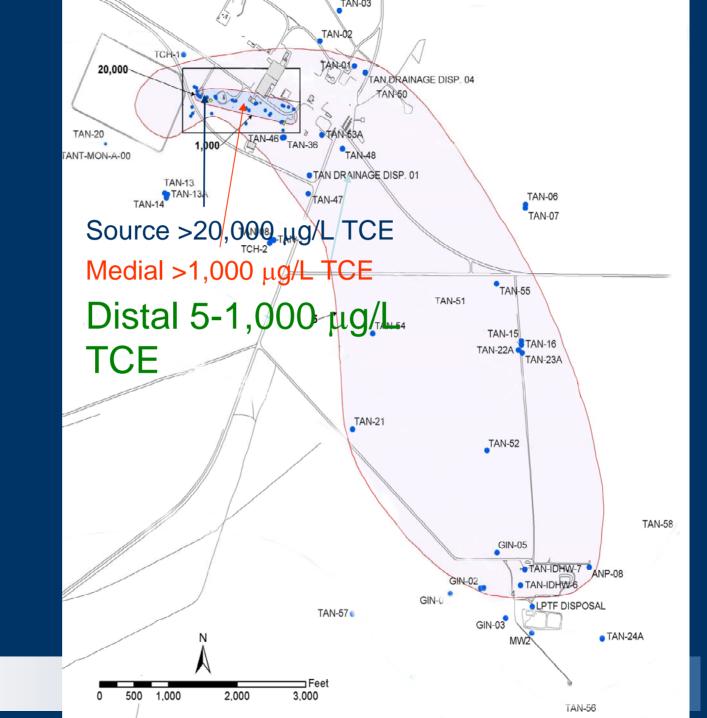
- (a) Acetylene: irreversible inhibitor of sMMO
- (b) Methane: competitive reversible inhibitor
- (c) 1-pentyne (3.5%): irreversible inhibitor for the 2monooxygenase pathways
- (d) 3-hexyne (2%): irreversible inhibitor for the 3-and 4-monooxygenases
- (e) Phenylacetylene (10-15%): dioxygenase
- (f) DNA...



#### **Additional Control Assays**

To offer supporting evidence for the enzyme activity probes.

PCR characterize the potential of the microbial community TOD: toluene 2,3-dioxygenase TOL: xylene monooxygenase RMO: toluene-3,-4-monooxygenase PHE: toluene-2, -3, -4-monooxygenase sMMO: mmoX (f882 & r1403) Universal: (8F and 907R).


FISH characterize the activity of the microbial community Eubacteria *Cytophaga-Flavobacterium* (most common toluene degrading organisms), type I and type II methanotrophs component B of the sMMO



#### **Test Area North Background**

- Past waste injections into the deep, fractured basalt aquifer have resulted in a nearly 2-mile long TCE plume at the Test Area North (TAN) facility of the Idaho National Laboratory (INL).
- 1995 ROD selected 30 years of pump and treat as the default remedy, but allowed for innovative technology evaluation.
- Monitored natural attenuation was evaluated as a remedy for the distal zone of the plume.







#### **MNA Field Evaluation**

- Studied all attenuation mechanisms for TCE in groundwater
  - Anaerobic reductive dechlorination
  - Aerobic cometabolism
  - Non-degradative mechanisms (e.g. dispersion)



#### Indirect Evidence: Aerobic TCE Degradation

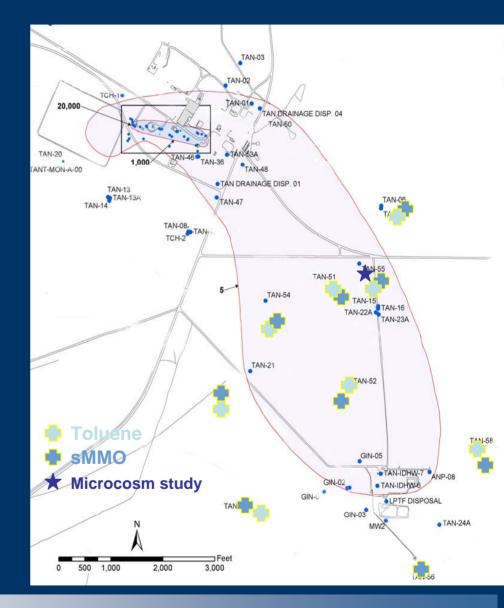
- TCE concentrations decrease with distance from the source area in relation to PCE and tritium with a halflife of 9-21 years.
- A numerical model generates a plume that more closely matches field data when the model incorporates a TCE degradation term.
- Laboratory studies have shown that organisms capable of aerobic cometabolic oxidation of TCE are native to TAN.



### Summary of MNA Field Evaluation

- The multiple lines of indirect evidence showed that TCE degradation was occurring and suggested that the mechanism was aerobic cometabolic oxidation.
- This led to the selection of MNA as the remedy for the distal portion of the plume (DOE-ID, 2001).
- However, direct evidence for the actual degradation mechanism was needed...




### Field application of probes

2001: 4 wells sampled: 3 inside the plume, 1 outside

2002: 6 wells sampled: 3 inside the plume, 3 outside

• sMMO

- All 'toluene' probes
- Controls





## FLUTe/Enzyme Probe Sampling Strategy

- Sample all depths in each of the five FLUTe liners to generate water chemistry profiles
- Collect triplicate enzyme probe samples at two non-FLUTe wells
- Collect enzyme probe and/or DNA samples from three discrete intervals in three of the five FLUTe wells



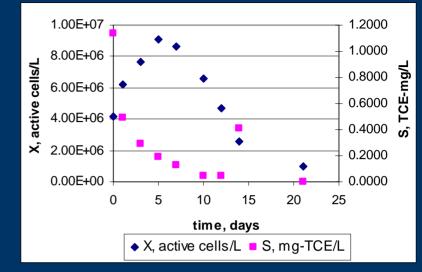


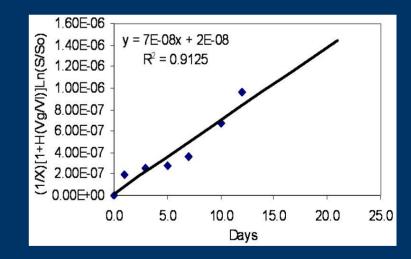
| 9/11/02 | TAN 7         | Filter 1 | I, 50L  | Filter 2, 20 L |         | Filter 3, 60L |         |
|---------|---------------|----------|---------|----------------|---------|---------------|---------|
| eb      |               | 0        | 2.8E+04 | 6              | 4.E+05  | <b>55</b>     | 5.5E+05 |
| hpa     |               | 79       | 1.1E+06 | 34             | 5.E+05  | 15            | 8.4E+05 |
| cinn    |               | 70       | 7.8E+05 | 63             | 3.E+05  | 0             | 4.7E+05 |
| ра      |               | 76       | 4.3E+04 | 49             | 4.E+05  | 63            | 4.8E+05 |
| 9/16/02 | <b>TAN 55</b> | 317 FT   |         | 424 FT         |         | 461 FT        |         |
| eb      |               | 60       | 2.5E+05 | <b>53</b>      | 3.7E+05 | <b>50</b>     | 8.7E+05 |
| hpa     |               | 20       | 2.4E+05 | 10             | 4.0E+05 | <b>49</b>     | 4.8E+05 |
| cinn    |               | 20       | 2.4E+05 | 39             | 5.8E+05 | 16            | 4.8E+05 |
| ра      |               | 33       | 4.7E+05 | 24             | 2.7E+05 | 48            | 5.3E+05 |
| 9/23/02 | TAN 52        | 266 FT   |         | 373 FT         |         | 456 FT        |         |
| eb      |               | 0        | 3.4E+05 | 0              | 3.0E+05 | 0             | 7.3E+05 |
| hpa     |               | 0        | 3.0E+05 | 0              | 2.8E+05 | 0             | 2.8E+05 |
| cinn    |               | 0        | 1.8E+05 | 0              | 3.6E+05 | 0             | 2.3E+05 |
| ра      |               | 13       | 2.9E+05 | 18             | 3.6E+05 | 14            | 1.2E+05 |
| 9/25/02 | <b>TAN 51</b> | 263 FT   |         | 342 FT         |         | 460 FT        |         |
| eb      |               | 0        | 4.8E+05 | 0              | 1.4E+06 | 0             | 5.2E+05 |
| hpa     |               | 10       | 2.7E+05 | 32             | 7.5E+05 | 0             | 3.4E+05 |
| cinn    |               | 0        | 2.7E+05 | 7              | 8.8E+05 | 0             | 3.8E+05 |
| pa      |               | 4        | 3.7E+05 | 4              | 1.2E+06 | 0             | 7.0E+05 |



### Amplification of sMMO gene directly from TAN groundwater

|                                     | 1,15 Ladder |
|-------------------------------------|-------------|
|                                     | 2 9/11 #1   |
|                                     | 3 9/11 #2   |
|                                     | 4 9/11 #3   |
|                                     | 5 9/16 #1   |
|                                     | 6 9/16 #2   |
|                                     | 7 9/16 #3   |
|                                     | 8 9/23 #1   |
|                                     | 9 9/23 #2   |
|                                     | 10 9/23 #3  |
|                                     | 11 9/25 #1  |
|                                     | 12 9/25 #2  |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 13 9/25 #3  |
|                                     | 14 Ob3B     |





#### Results of two-year study

- In situ enzyme activity measurement, coupled with genetic assessment, demonstrates methanotrophic and toluene-oxygenase activity at TAN
- sMMO and toluene oxygenase activity were noted for both wells both inside and outside of TCE plume
- Based on this two year study, our results confirm that the degradation mechanisms includes aerobic cometabolism by indigenous subsurface microbial communities



- Distal aerobic portion of the Test Area North TCE plume, Idaho (<100 μg L<sup>-1</sup>); simultaneously measured TCE degradation and enzyme probes over three week period
- First order decay previously described and validated; Unique attribute of the work described is the replacement of the total concentration of cells (x) with active cells.
- Half-life determined 22.3 years (compared to 25 yr relative to PCE and 13 yr relative to tritium based on tracercorrected method)





ield Wc



Acknowledgements:

DOE, Idaho National Lab, North Wind Inc., Sandia National Labs

Colleagues: Lee Nelson (ICP) Rick Colwell, Will Keener, Brady Lee (INL)

