

Proudly Operated by Battelle Since 1965

TCE Fate and Transport Evaluation for Paducah Groundwater: Attenuation Mechanisms

HOPE LEE

Pacific Northwest National Laboratory, Richland, WA

Environmental Microbiologist

Technical and Program Lead for Soil and Groundwater

Outline

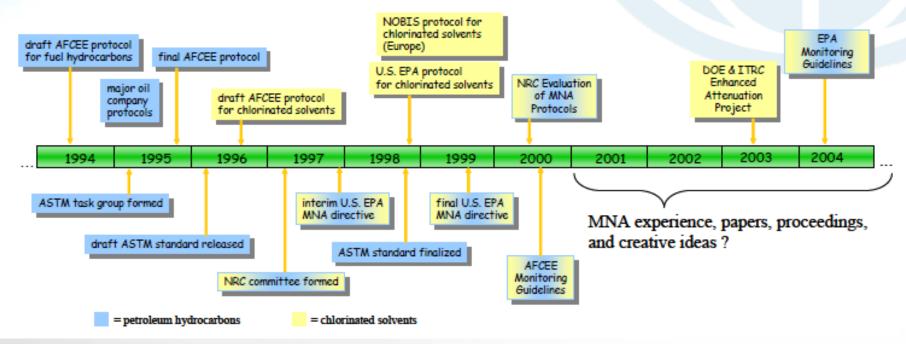
Proudly Operated by Battelle Since 1965

- Monitored Natural Attenuation: Then and Now
- Mechanisms for Attenuation
- DQO for Paducah
- Lines of evidence
 - Enzyme Activity Probes
 - Compound Specific Isotope Analysis, CSIA
 - qPCR
 - Microcosm Rate studies
 - Terminal Restriction Fragment Length Polymorphism, tRFLP
- Broader Implications for these approaches

Monitored Natural Attenuation 1998

EPA defines the term MNA .. Refers to reliance on natural attenuation processes to achieve site-specific remedial objectives within time frame which is reasonable compared to that offered by other more active methods. The natural attenuation processes that are at work in such a remediation approach include a variety of physical, chemical, or biological processes that under favorable conditions, act without human intervention to reduce mass, toxicity, mobility, volume, and bioconcentration of contaminants in soil or groundwater.

- BIODEGRADATION
- **DISPERSION**
- DILUTION
- SORPTION
- VOLATILIZATION
- BIOLOGICAL OR CHEMICAL STABILIZATION
- TRANSFORMATION
- DESTRUCTION


Biological Mechanisms

D

Degradation Process	Reaction Process
** Aerobic Oxidation	Compound is oxidized (electron donor). Yields energy to the microorganism
Aerobic Cometabolism	Compound is oxidized by an enzyme or co-factor produced during microbial metabolism of another compound; No carbon or energy to microorganism
Anaerobic Oxidation	Compound is oxidized by electron acceptors other than oxygen. Yields energy to microorganism
** Direct ARD	Compound is reduced (electron acceptor). Yields energy to microorganism
Cometabolic ARD	Compound is reduced by an enzyme or co-factor produced during microbial metabolism of another compound; No carbon or energy to microorganism
** Abiotic	Compound is reduced by chemical reaction.

Natural Attenuation of hydrocarbons and chlorinated solvents

1990s- So why did virtually all natural attenuation and bioremediation research for chlorinated solvents shift to anaerobic?

- aerobic slow, indirect process
- difficult/challenging to design
- intermediates, other inhibitors

2000s - As result of large plumes, emerging contaminants, and our understanding aerobic potential for direct metabolism ... Focus is back to the aerobic community.

** Lots of examples of successful application of MNA at DOE sites (SRNL, INL) **

AEROBIC Microbial Abundance and Activity ... Why do we care?

Proudly Operated by Battelle Since 1965

Large number of sites are:

aerobic, large (extent or depth), low biomass and low organic matter

 Many sites will remain above MCLs after the remediation strategy/treatment is complete:

source as result of less transmissible layers (clays, silts) immobilized forms (metals and radionuclides) return on investments and/or cost of aggressive treatments

 Guidance, technical protocols, acceptable standards are lacking in how to transition these sites (within and between agencies)

Background: Historical TCE Attenuation Activities/Information

Proudly Operated by Battelle Since 1965

PGDP Groundwater Flow & Transport Models

- MODFLOW & MODFLOWT
- Development 1990 1999
- Applied TCE half-life of 26.7 years to sources and all dissolved phase plume concentrations
- Evaluation of Natural Attenuation Processes for TCE and ⁹⁹Tc in the Northwest and Northeast Plumes (Lockheed Martin Energy Systems, 1997)
 - Evaluated RGA Geochemistry
 - Evaluated Biological and Abiotic Processes based on existing site monitoring data
 - Estimated TCE half-life range from 9.4 to 26.7 years
- Chlorine Isotope Investigation of Natural Attenuation in an Aerobic Aquifer (Sturchio, Claussen, et.al., 1999)

Southwest Plume Site Investigation (DOE, 2004)

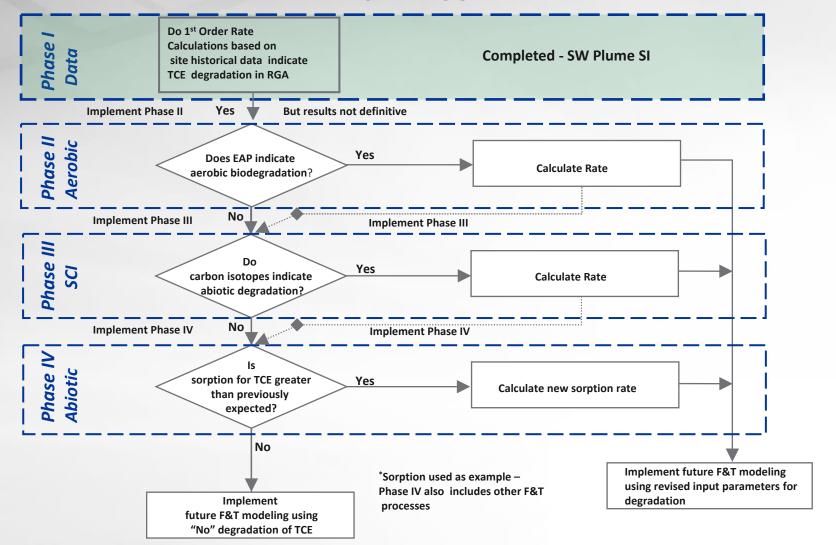
- 1st Order Decay Calculations revisited
- Used ⁹⁹Tc to estimate TCE half-life range from 3.2 to 11.3 years.

Path Forward

- Regulators and technical community concerned degradation rates for TCE attenuation/degradation developed thru 2005 not well supported
- Need for site to identify & quantify TCE Fate & Transport parameters in order to proceed with assessment of:
 - Long term environmental impacts
 - Long term risks
 - Remedial options
- KRCEE asked by DOE-Portsmouth/Paducah Project Office (PPPO) to assemble a Project Team to address TCE Fate and Transport
 - Use DQO Process
 - Discussions with project team participants started Summer 2005
 - Degradation rate of TCE in the RGA is only one of several parameters affecting fate and transport being addressed

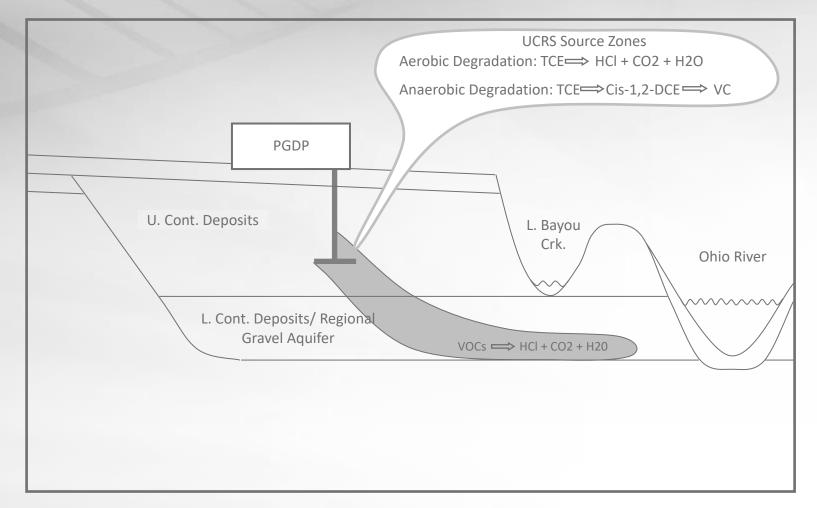
TCE Fate & Transport Project Team: 2005

Proudly Operated by Battelle Since 1965


Organization	Representatives
	Rich Bonczek (PPPO Tech Lead)
DOE-PPPO	Dave Dollins (PGDP GWOU PM)
KRCEE	Steve Hampson, John Volpe
USEPA Region IV	David Williams
Kentucky Division of Waste Mgmt	Ed Winner, Todd Mullins
DOE-EM	Beth Moore
Savannah River National Laboratory	Brian Looney
North Wind Environmental	Hope Lee
Paducah Remediation Services	Bryan Clayton, Ken Davis
Navarro Engineering	Bruce Phillips, Tracey Fitzgerald

TCE Fate & Transport Project

Proudly Operated by Battelle Since 1965


4 Phased Project Approach

Background GW Conceptual Model

Proudly Operated by Battelle Since 1965

Trichloroethene Migration (Primary Source and Dissolved-Phase Plume)

Regional Gravel Aquifer: Aerobic Environment

TCE Fate & Transport Project, Phase II - Aerobic Degradation

Why investigate the presence and activity of aerobic microorganisms (bacteria) in the RGA?

- RGA Groundwater Evaluation RGA scored poorly on ranking for anaerobic degradation occurrence based on hydro-geochemical conditions
- RGA Is an Aerobic Aquifer (in and outside of plumes) contains sufficient levels of Dissolved Oxygen to support/sustain aerobic microorganisms
- Dissolved Oxygen trends indicate possible relationship to respiration processes
- Redox conditions in the RGA strongly indicate the potential for aerobic microorganisms & aerobic TCE degradation
 - Would not support/sustain anaerobic microorganisms

TCE Fate & Transport Project, Phase II - Aerobic Degradation DQOs

Proudly Operated by Battelle Since 1965

Problem Statement (Phase II – Aerobic Biodegradation)

The Paducah site has contaminated groundwater. The purpose of the proposed work is to demonstrate whether sustainable trichloroethene (TCE) biodegradation occurs within the RGA under aerobic aquifer conditions.
 Biodegradation needs to be characterized and assessed, and the resources necessary to evaluate this process needs to be identified.

TCE Fate & Transport Project, Phase II - Aerobic Degradation DQOs

Proudly Operated by Battelle Since 1965

Decision / Estimation Statements

- 1. Based on the use of "oxygenase" specific enzyme activity probes, determine whether bacteria capable of aerobically biodegrading TCE are present in the RGA.
- 2. Based on the use of stable carbon isotope (SCI) fractionation tests, determine whether SCI supports the occurrence of aerobic degradation and/or other biotic/abiotic degradation processes.
- 3. Estimate whether the distribution and number of bacteria are sufficient to significantly biodegrade the plumes
- 4. Determine whether conditions (e.g., bioavailable and sustainable substrates) in the RGA are conducive for ongoing and sustainable aerobic biodegradation of TCE
- 5. Based upon a comparison of the calculated biodegradation rate, or rate range, to values in literature, either accept the calculated rate for future modeling or assess the team's confidence in the unsupported results

TCE Fate & Transport Project, Phase II – Aerobic Degradation DQOs

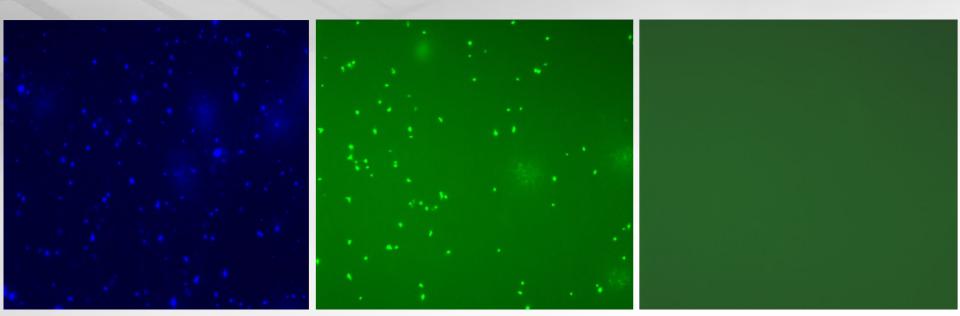
Proudly Operated by Battelle Since 1965

Draft Decision Rules

- Greater than or equal to half (50%) of the wells in the plume must contain bacteria having an "oxygenase" enzyme capable of aerobically degrading TCE in order to conclude that aerobic processes are occurring throughout the plume.
- If greater than 50% of the EAP analyses indicate bacteria having an "oxygenase" enzyme capable of degrading TCE, then the spatial relationship between the monitoring wells with positive results will be examined to estimate the impact of biodegradation on the plume.
- If the 50% level is not reached, it will be assumed that aerobic bacteria are not appreciably contributing to degradation in the plume from which the samples were collected (does not mean that biodegradation is not occurring, but biodegradation alone is insignificant in it's impact on the areal extent of the plume.
- The bacterial cell count per well must be greater than 10³/ml. If the cell count in any well is less than 10³/ml, the well is considered to have no aerobic bacteria activity capable of TCE degradation.

Enzyme Activity Probes: EAP

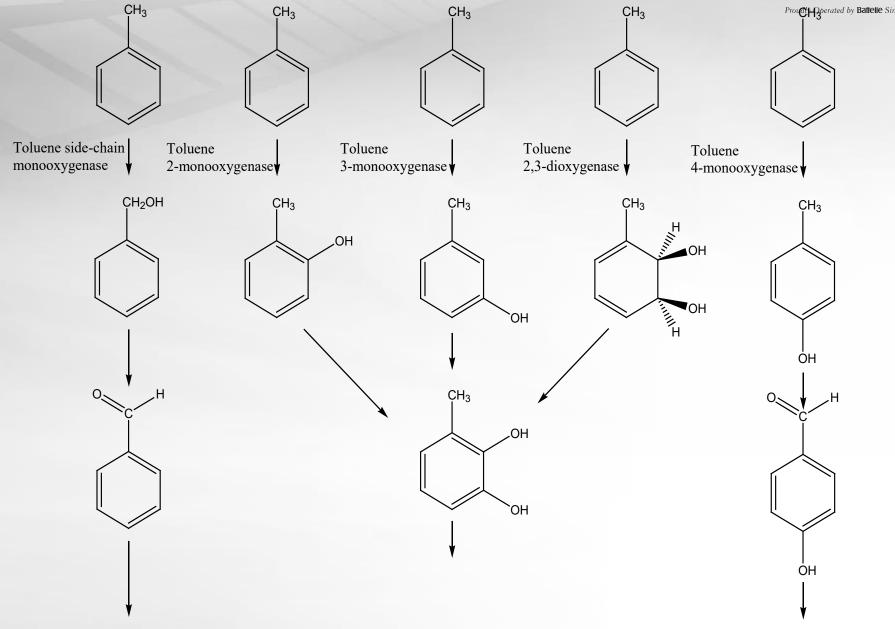
Proudly Operated by Battelle Since 1965


Methane Toluene Probe TCE

Other natural substrates that support TCE oxidation: benzene, ammonia, phenol, naphthalene, propane

EAP micrographs

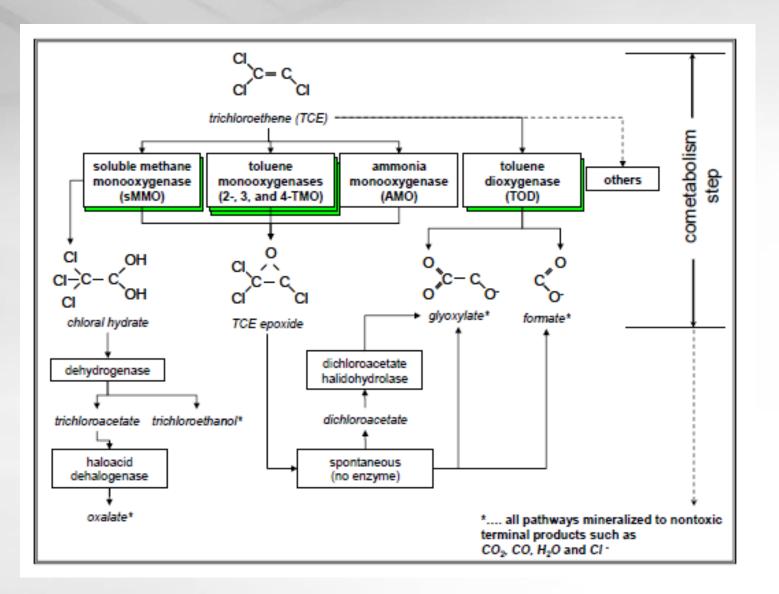
Proudly Operated by Battelle Since 1965


DAPI- total cells

Enzyme probes- positive response

Enzyme probes- negative response

Aromatic Oxygenase Pathways



Cometabolic Pathways for TCE, PCE, petroleum hydrocarbons ...

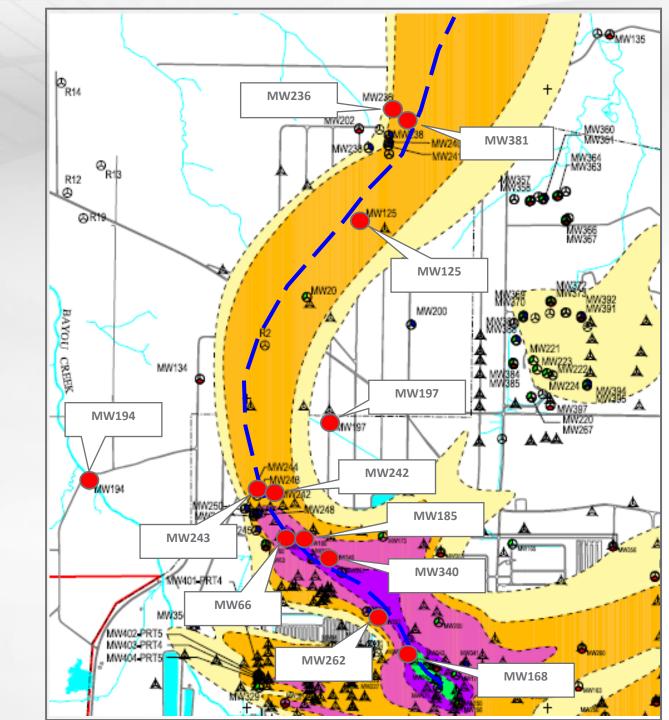
Proudly Operated by Battelle Since 1965

Correlation: qPCR & EAP

Pathway	Probe	PCR/qPCR
side-chain monooxygenase	3EB	TOL
2-monooxygenase	3HPA PA	PHE
3-monooxygenase	3HPA <i>maybe</i> PA	RMO, PHE
4-monooxygenase	NO EAP <i>currently</i> validated	RMO, PHE
2,3-dioxygenase	trans-cinnamonitrile	TOD
soluble methane monooxygenase (sMMO)	Coumarin	mmoX

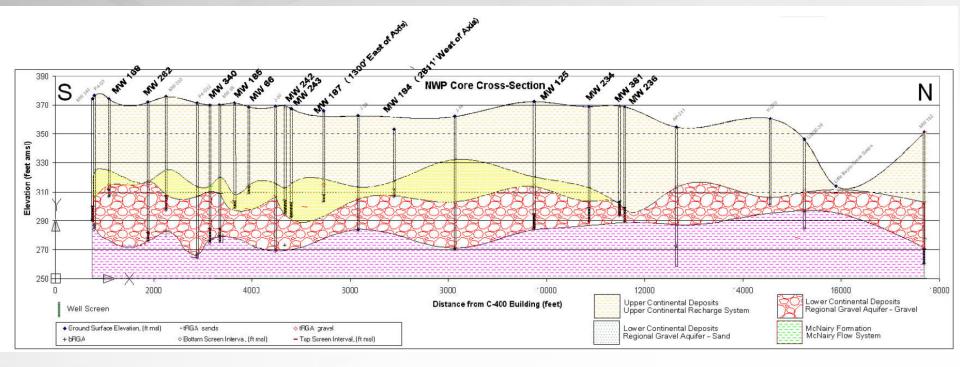
New quantitative assays developed & validated: Naphthalene, ammonia, particulate methane, alkane, benzene, propane oxygenases, catechol dioxygenase

TCE Fate & Transport Project, Phase II – Aerobic Degradation DQOs



Proudly Operated by Battelle Since 1965

Monitoring Wells Proposed for Sampling


Screen Interval	Approx. Screen Depth (ft bgs)	Next Scheduled Sample Date	Priority	Comments
URGA	55 - 60	March	2	Near SWMU 7/30 Source
LRGA	78 - 88	March	1	
URGA	63 - 68	March	1	
MRGA	68 - 73	March	1	
URGA	47 - 52	March	2	Control Well - outside of Plume
URGA	58 - 63	March	3	Control Well - outside of Plume
LRGA	69.5 - 79.5	May	2	
MRGA	66 - 76	May	3	
MRGA	65 - 75	May	3	
MRGA	65 - 75	Мау	3	Downgradient of South Well Field; initially >10 mg/L, been at 1 mg/L for last 10 years
LRGA	90 - 95	March	1	
LRGA	85.5 - 95.3	March	2	
	Interval URGA URGA URGA URGA URGA URGA URGA MRGA MRGA MRGA MRGA LRGA	Interval Depth (ft bgs) URGA 55 - 60 LRGA 78 - 88 URGA 63 - 68 MRGA 68 - 73 URGA 55 - 60 LRGA 78 - 88 URGA 63 - 68 MRGA 68 - 73 URGA 58 - 63 URGA 69.5 - 79.5 MRGA 66 - 76 MRGA 65 - 75 MRGA 65 - 75 LRGA 90 - 95	Interval Depth (ft bgs) Sample Date URGA 55 - 60 March LRGA 78 - 88 March URGA 63 - 68 March URGA 68 - 73 March URGA 66 - 76 May MRGA 66 - 76 May MRGA 65 - 75 May MRGA 65 - 75 May LRGA 90 - 95 March	Interval Depth (ft bgs) Sample Date Priority URGA 55 - 60 March 2 LRGA 78 - 88 March 1 URGA 63 - 68 March 1 URGA 68 - 73 March 1 URGA 68 - 75 March 2 URGA 67 - 79.5 May 2 MRGA 66 - 76 May 3 MRGA 65 - 75 May 3 MRGA 65 - 75 May 3 LRGA 90 - 95 March 1

"Priority" based on sampling schedule dates only

Proudly Operated by Battelle Since 1965

Well Characterization Data: May 2007

		1 20							
Monitoring	Aquifer	in the second		тсе		(pC	netium 1 / L)	dissolved oxygen	рН
Well	Designati	on Depth		(ua/L)		result	error	(mg/L)	(std units)
MW 168		63 - 6	8	110	< 100			2.5	5.76
MW66	URGA	55 - 6	0	700	< 5			5.8	6.01
MW 194	ONOA	47 - 5	2	1	< 5			5.4	5.98
MW 197		58 - 6	3	3.9	< 5			0.6	6.01
MW 185		68 - 7	3	3300) 140			2.0	6.08
MW 242	MRGA	65 - 7	5	110	< 5			1.5	5.62
MW 243	MILLS AND	65 - 7		100				5.9	6.22
MW 381		66 - 7		50	< 5			3.2	6.18
MW 262		90 - 9		950				0.6	5.89
MW 340	LRGA	85.5 - 9		6500				3.5	5.94
MW 236		69.5 - 7		21	< 5			3.4	6.19
MW 125		78 - 8						3 0	8 0 5
1010112.0		/0-0	8	700	< 25			2.8	6.05
Monitoring Well	oxidation - reduction potential (mV)	specific conductivity (umhos/cm)	chlor (mg	lde	nitrate (mg/L)	sulfate (mg/L)	Iron (II) (mg/L)	total organic carbon (mg/L)	alkalinity (mg/L as CaCO ₃)
Monitoring	reduction potential (mV) 428	specific conductivity (umhos/cm) 533	chlor (mg	ride /L) 2	nitrate (mg/L) 17	sulfate (mg/L) 11	Iron (II)	total organic carbon (mg/L) < 1	alkalinity (mg/L as CaCO ₃) 77
Monitoring Well MW 168 MW 86	reduction potential (mV) 428 304	specific conductivity (umhos/cm) 533 213	chlor (mg) 92 13	ride /L) 2 3	nitrate (mg/L) 17 5.8	sulfate (mg/L) 11 11	Iron (II) (mg/L) 0.035 < 0.02	total organic carbon (mg/L) < 1 < 1	alkalinity (mg/L as CaCO ₃) 77 72
Monitoring Well MW 168 MW 66 MW 194	reduction potential (mV) 428 304 367	specific conductivity (umhos/cm) 533 213 249	chlor (mg) 92 13 27	ride /L) 2 3	nltrate (mg/L) 17 5.8 7.0	sulfate (mg/L) 11 11 6.5	Iron (II) (mg/L) 0.035 < 0.02 < 0.02	total organic carbon (mg/L) < 1 < 1 < 1 < 1	alkalinity (mg/L as CaCO ₃) 77 72 72 72
Monitoring Well MW 168 MW 66 MW 194 MW 197	reduction potential (mV) 428 304 367 -7	specific conductivity (umhos/cm) 533 213 249 440	chlor (mg) 92 13 27 65	ride /L) 2 3 7 5	nitrate (mg/L) 17 5.8 7.0 < 4.4	sulfate (mg/L) 11 11 6.5 16	Iron (II) (mg/L) 0.035 < 0.02 < 0.02 23.9	total organic carbon (mg/L) < 1 < 1 < 1 2.3	alkalinity (mg/L as CaCO ₃) 77 72 72 72 78
Monitoring Well MW 168 MW 66 MW 194 MW 197 MW 185	reduction potential (mV) 428 304 367 -7 527	specific conductivity (umhos/cm) 533 213 249 440 437	chior (mg) 92 13 27 65 57	ride /L) 2 3 7 5 7	nltrate (mg/L) 17 5.8 7.0 < 4.4 7.5	sulfate (mg/L) 11 11 6.5 16 12	Iron (II) (mg/L) 0.035 < 0.02 < 0.02 23.9 < 0.02	total organic carbon (mg/L) < 1 < 1 < 1 2.3 < 1	alkalinity (mg/L as CaCO ₃) 77 72 72 72 78 109
Monitoring Well MW 168 MW 66 MW 194 MW 197	reduction potential (mV) 428 304 367 -7 527 166	specific conductivity (umhos/cm) 533 213 249 440 437 358	chlor (mg) 92 13 27 65 57 63	ride /L) 2 3 7 5 7 3	nitrate (mg/L) 17 5.8 7.0 < 4.4 7.5 < 4.4	sulfate (mg/L) 11 11 6.5 16 12 12	Iron (II) (mg/L) 0.035 < 0.02 < 0.02 23.9 < 0.02 8.13	total organic carbon (mg/L) < 1 < 1 < 1 2.3 < 1 < 1 < 1 < 1 < 1 < 1 2.3	alkalinity (mg/L as CaCO ₃) 77 72 72 72 78 109 55
Monitoring Well MW 188 MW 68 MW 194 MW 197 MW 185 MW 242 MW 243	reduction potential (mV) 428 304 367 -7 527 166 252	specific conductivity (umhos/cm) 533 213 249 440 437 358 459	chlor (mg) 92 13 27 65 57 63 12	ride /L) 2 3 7 5 7 3 2	nltrate (mg/L) 17 5.8 7.0 < 4.4 7.5 < 4.4 < 4.4	sulfate (mg/L) 11 11 6.5 16 12 12 12 67	Iron (II) (mg/L) 0.035 < 0.02 < 0.02 23.9 < 0.02 8.13 0.046	total organic carbon (mg/L) < 1 < 1 < 1 2.3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	alkalinity (mg/L as CaCO ₃) 77 72 72 78 109 55 113
Monitoring Well MW 168 MW 66 MW 194 MW 197 MW 185 MW 242 MW 243 MW 243 MW 381	reduction potential (mV) 428 304 367 -7 527 166 252 286	specific conductivity (umhos/cm) 533 213 249 440 437 358 459 372	chlor (mg 92 13 27 65 57 63 12 41	ride /L) 2 3 7 5 7 7 3 2 1	nltrate (mg/L) 17 5.8 7.0 < 4.4 7.5 < 4.4 < 4.4 < 4.4 6.7	sulfate (mg/L) 11 11 6.5 16 12 12 12 67 24	Iron (II) (mg/L) 0.035 < 0.02 < 0.02 23.9 < 0.02 8.13 0.046 < 0.02	total organic carbon (mg/L) < 1 < 1 < 1 2.3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	alkalinity (mg/L as CaCO ₃) 77 72 72 72 78 109 55 113 98
Monitoring Well MW 168 MW 66 MW 194 MW 197 MW 185 MW 242 MW 243	reduction potential (mV) 428 304 367 -7 527 166 252 286 339	specific conductivity (umhos/cm) 533 213 249 440 437 358 459 372 679	chlor (mg) 92 13 27 65 57 63 12 41 11	ride /L) 2 3 7 5 7 5 7 3 2 2 1 0	nltrate (mg/L) 17 5.8 7.0 < 4.4 7.5 < 4.4 < 4.4 < 4.4 6.7 5.6	sulfate (mg/L) 11 11 6.5 16 12 12 12 67 24 39	Iron (II) (mg/L) 0.035 < 0.02 < 0.02 23.9 < 0.02 8.13 0.046	total organic carbon (mg/L) < 1 < 1 < 1 2.3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	alkalinity (mg/L as CaCO ₃) 77 72 72 72 78 109 55 113 98 105
Monitoring Well MW 168 MW 66 MW 194 MW 197 MW 185 MW 242 MW 243 MW 381	reduction potential (mV) 428 304 367 -7 527 166 252 286 339 367	specific conductivity (umhos/cm) 533 213 249 440 437 358 459 372 679 460	chlor (mg) 92 13 27 65 57 63 12 41 11 61	ride /L) 2 3 7 5 7 5 7 3 2 1 0 1	nltrate (mg/L) 17 5.8 7.0 < 4.4 7.5 < 4.4 < 4.4 < 4.4 6.7 5.6 7.2	sulfate (mg/L) 11 11 6.5 16 12 12 12 67 24 39 28	Iron (II) (mg/L) 0.035 < 0.02 < 0.02 23.9 < 0.02 8.13 0.046 < 0.02	total organic carbon (mg/L) < 1 < 1 < 1 2.3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	alkalinity (mg/L as CaCO ₃) 77 72 72 78 109 55 113 98 105 109
Monitoring Well MW 188 MW 68 MW 194 MW 197 MW 197 MW 185 MW 242 MW 243 MW 243 MW 381 MW 262	reduction potential (mV) 428 304 367 -7 527 166 252 286 339	specific conductivity (umhos/cm) 533 213 249 440 437 358 459 372 679	chlor (mg) 92 13 27 65 57 63 12 41 11	ride /L) 2 3 7 5 7 3 2 1 0 1 1	nltrate (mg/L) 17 5.8 7.0 < 4.4 7.5 < 4.4 < 4.4 < 4.4 6.7 5.6	sulfate (mg/L) 11 11 6.5 16 12 12 12 67 24 39	Iron (II) (mg/L) 0.035 < 0.02 < 0.02 23.9 < 0.02 8.13 0.046 < 0.02 < 0.02	total organic carbon (mg/L) < 1 < 1 < 1 2.3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	alkalinity (mg/L as CaCO ₃) 77 72 72 72 78 109 55 113 98 105

Well Characterization Data: December 2007

Proudly Operated by Battelle Since 1965

Monitoring	Monitoring Aquifer		TCE	DCE	technetium (pCI/L)		dissolved	рН	oxidation - reduction	specific conductivity
Well	Designation	Interval Depth (ft)	(µg/L)	(µg/L)	result	error	oxygen	(std units)	potential (mV)	(umhos/cm)
MW 168		63 - 68	110	< 1.2	2400	45	3.1	5.87	233	492
MW66	URGA	55 - 60	930	< 5	530	24	5.7	6.01	285	190
MW 194	UNUA	47 - 52	1	< 1	ND		3.6	6.20	114	251
MW 197		58 - 63	3.5	< 1	ND		0.7	6.13	2	424
MW 185		68 - 73	3600	76	696	26	1.7	6.10	269	382
MW 242	MRGA	65 - 75	150	4.4	110	15	0.8	6.09	63	395
MW 243	MIROA	65 - 75	590	< 5	306	19	3.8	5.96	150	378
MW 381		66 - 76	47	< 1	21.5	12.5	6.1	6.65	261	502
MW 262		90 - 95	1400	11	519	23	0.8	5.97	218	601
MW 340	LRGA	85.5 - 95.3	9700	< 80	647	26	3.2	6.04	254	453
MW 236	LRGA	69.5 - 79.5	72	< 1	29.1	12.7	6.1	6.65	261	502
MW 125		78 - 88	620	< 5	220	18	2.9	6.11	400	310

Enzyme Activity Probes

Proudly Operated by Battelle Since 1965

			Qualitative data (6/4/7)						
Monitoring Aquifer S Well Designation		Screened Interval Depth	sMMO probe	MMO probe Toluene		Quantitative data (fluorescent cells/mL)			
	(ft bgs)	(ft bgs)	Coumarin	probes	ЗНРА	PA	Cinnamonitrile	cells/mL	
MW168		63 - 68	-	-	nd	2.41x10 ³	nd	1.90x10 ⁵	
MW66		55 - 60	+	+++	1.43x10 ⁴	2.10x10 ⁴	9.14x10 ³	3.67x10 ⁵	
MW194	URGA	47 - 52	+	+++	3.13x10 ³	9.52x10 ³	1.20x10 ⁴	1.76x10 ⁵	
MW197	onon	58 - 63	-	+	1.73x10 ⁴	6.28x10 ⁴	2.23x10 ³	1.59x10 ⁵	
MW197 (resample)			na	na	5.03x10 ³	1.20x10 ⁴	2.04x10 ³	7.05x10 ⁵	
MW185		68 - 73	-	++	1.79x10 ⁴	1.37x10 ⁴	1.95x10 ³	9.75x10 ⁵	
MW242	MRGA	65 - 75	-	-	3.57x10 ³	1.24x10 ³	8.85x10 ³	7.76x10 ⁵	
MW243	WRGA	65 - 75	-	-	3.29x10 ³	4.61x10 ³	1.32x10 ³	4.27x10 ⁵	
MW381	Ī	66 - 76	-	++	6.14x10 ⁴	3.52x10 ⁴	5.51x10 ³	9.66x10 ⁵	
MW262		90 - 95	+	+++	1.35x10 ⁴	1.36x10 ⁴	2.79x10 ⁴	3.52x10 ⁵	
MW 262 (resample)			na	na	1.05x10 ⁴	1.22x10 ⁴	5.71x10 ³	2.84x10 ⁵	
MW340	LRGA	85.5 - 95.3	+	+	3.63x10 ²	9.57x10 ³	nd	7.25x10 ⁵	
MW236	I	69.5 - 79.5	+	+++	3.24x10 ⁴	5.26x10 ⁴	9.28x10 ³	8.84x10 ⁵	
MW125		78 - 88	+	++	1.39x10 ⁴	6.37x10 ⁴	2.03x10 ⁴	7.99x10 ⁵	

URGA: Upper Regional Gravel Aquifer

MRGA: Middle Regional Gravel Aquifer

LRGA: Lower Regional Gravel Aquifer

3HPA: 3-hydroxy-phenylacetylene --> probe for toluene oxidase and related activity

PA: Phenylacetylene --> probe for toluene oxidase and related activity

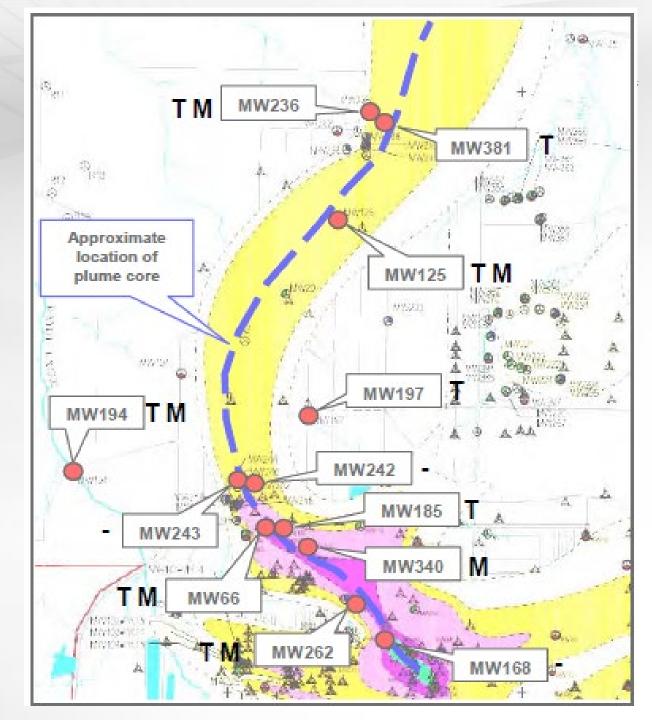
cinnamonitrile: probe for tolulene dioxygenase and related activity

DAPI: 4',6-Diamidino-2-Phenylindole (double stranded DNA staining)

ft bgs- feet below ground surface

µg/L - micrograms per liter

pCi/L - picocuries per liter


cells/mL – per milliliter

Highlight denotes that the toluene probe response was considered moderate (fluorescent activity > 3x10³ cells/mL and < 8x10³ cells/mL) – see text for explanation

Highlight denotes that the sMMO probe was significantly above background or the toluene probe response was considered significant (> 8x10³ cells/mL fluorescent activity)

EAP data for the NW plume

T: Toluene Oxygenase activity S: sMMO activity

PCR: Aromatic Genes of Interest

Proudly Operated by Battelle Since 1965

Monitoring	Aquifer				
Well	Designation	sMMO	RMO	PHE	TOD
MW168		+	-	+	-
MW66	URGA	+	+	+	+
MW194	UNUA	+	+	+	+
MW197		-	+	+	+
MW185		-	-	+	+
MW242	MRGA	+	-	+	+
MW243	MINOA	+	-	+	+
MW381			+	+	+
MW262		+	+	+	+
MW340	LRGA	+	-	+	+
MW236	LINGA	+	+	+	+
MW125		+	+	+	+

sMMO: soluble methane monooxygenase

RMO: Ringhydroxylation toluene monooxygenase

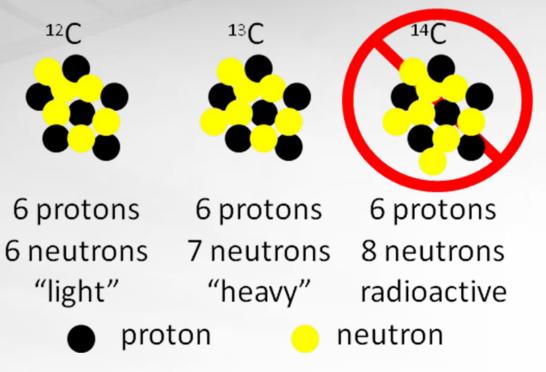
PHE: Phenol monooxygenase

TOD: toluene/xylene monooxygenase

TCE Fate & Transport Project, Phase II – Aerobic Degradation DQOs

Proudly Operated by Battelle Since 1965

Draft Decision Rules


- Greater than or equal to half (50%) of the wells in the plume must contain bacteria having an "oxygenase" enzyme capable of aerobically degrading TCE in order to conclude that aerobic processes are occurring throughout the plume.
- If greater than 50% of the EAP analyses indicate bacteria having an "oxygenase" enzyme capable of degrading TCE, then the spatial relationship between the monitoring wells with positive results will be examined to estimate the impact of biodegradation on the plume.
- If the 50% level is not reached, it will be assumed that aerobic bacteria are not appreciably contributing to degradation in the plume from which the samples were collected (does not mean that biodegradation is not occurring, but biodegradation alone is insignificant in it's impact on the areal extent of the plume.
- The bacterial cell count per well must be greater than 10³/ml. If the cell count in any well is less than 10³/ml, the well is considered to have no aerobic bacteria activity capable of TCE degradation.

Compound Specific Isotope Analysis

Proudly Operated by Battelle Since 1965

Isotopes of Carbon

Changes in isotopic ratios are caused by the breaking of bonds between atoms. Physical processes do not change the ratios in compounds to the same extent as bio-geochemical processes.
 It takes slightly less energy to break a bond between a light isotope and another atom than between heavy isotope and the same atom; the reaction rates of the heavier isotope are slightly slower so the percentage of heavy isotopes increases as the contaminant is degraded

Enrichment factors for degradation pathways

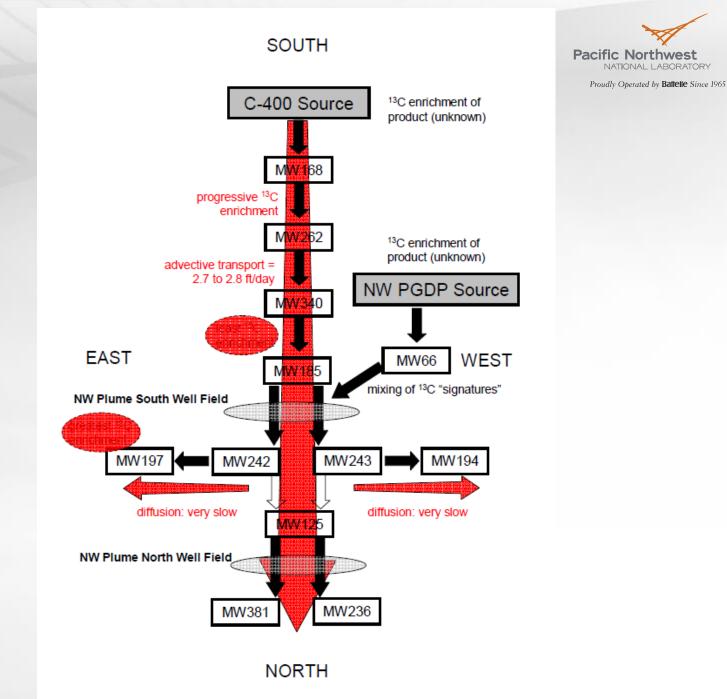
Proudly Operated by Battelle Since 1965

Pathway	c-DCE	TCE
Anaerobic	–12.0 to –25.5	-2.5 to -31.1
sMMO	-0.4±0.5	-1.1±0.3
T2MO		-19.3±1.8
ТЗМО	-0.89±0.51	-11.60±4.11
T4MO		-14.40±6.44
TDO	-1.17±0.60	-14.31±2.38
aerobic oxidation	-8.5±0.10	-7.2±0.07

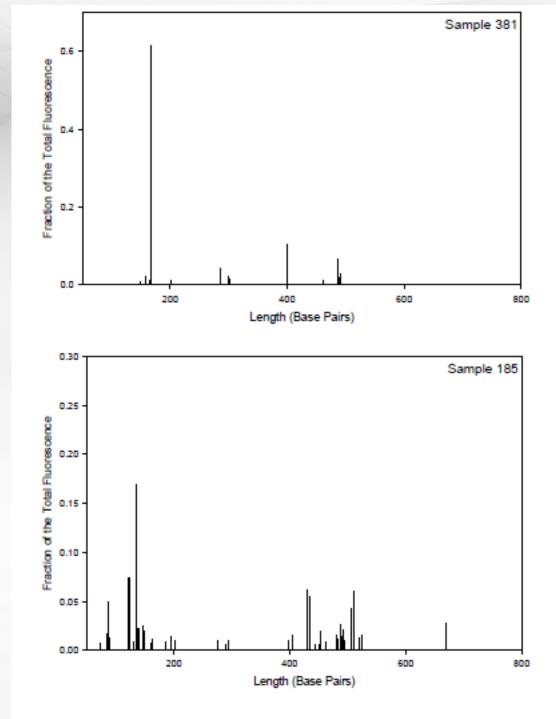
Published values for specific pathways (summary of 10 studies). Problems: Wide RANGE of values for aerobic degradation of chlorinated solvents. MANY aerobic pathways.

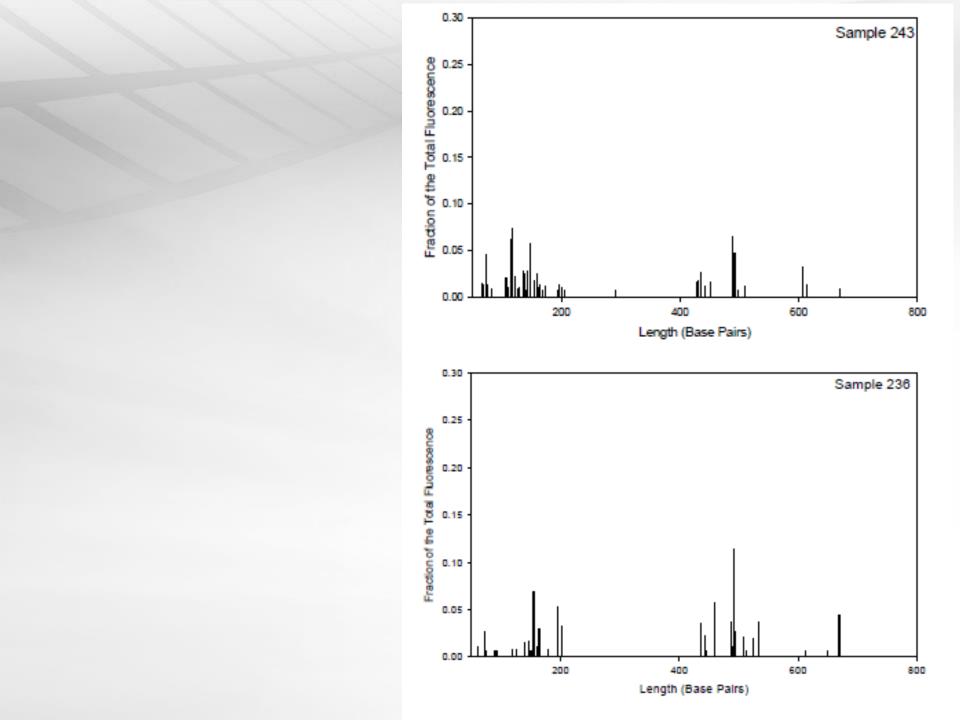
CSIA data: Third line of evidence, biodegradation Pacific Northwest NATIONAL LABORATORY IS occurring

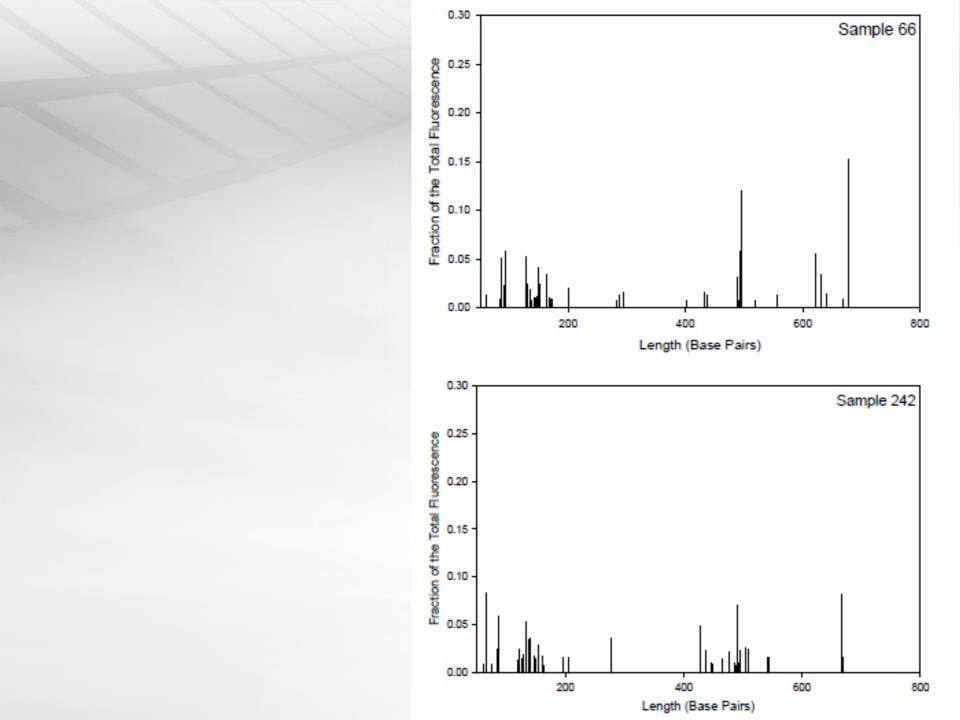
- 70% of SCI well-pair comparisons showed an increase in the carbon-13 to carbon-12 (13C/12C) ratio in the down gradient well
- The increase in the carbon-13 to carbon-12 (13C/12C) ratio in the down gradient wells supports the occurrence of biodegradation along the plume flowpath


Sample ID	TCE d13C (permil)	
PGDP NW plume wells alo	ng flow path	
MW-168	-24.8	near source
MW-262	-25.8	
MW-340	-25.9	
MW-185	-25.9	
MW-242	-24.6	
MW-243	-25.3	
MW-125	-25.6	
MW-381	-25.4	↓ ↓
MW-236	-25.3	distal portion of plume
PGDP well near downgrad	lient source	
MW-66	-25.3	
PGDP control wells outsid	le plume	
MW-194	na	7
MW-197	-23.1	

CSIA data: Monitoring Well Pairs




Proudly Operated by Battelle Since 1965


	Original Data Set, mean Epsilon -1.1										
			Decision	Rule 4	Decision Rule 5				Decision Rule 6		
Well Pair	Mean Epsilo n (ε)	SCIR In(C/C_)	In(C/Co) SCIR < In(C/C0) TCE	In(C/Co) SCIR < 0.33 * In(C/Co) TCE	In(C/C0) SCIR not < 0.33 * In(C/Co) TCE	TCE δ ¹³ C (permil) Up- gradient + SDey	TCE 5 ¹³ C (permil) Down- gradient - SDev	Mean In (C/Co) (TCE ŏ¹³C (permil) +/ Sdev) Significant	In(C/Co) SCIR significant < 0.10 * In(C/Co) TCE		
MW262-236	-1.1	-0.45	Yes			-25.6	-25.5	-0.091	Yes		
MW340-236	-1,1	-0.55			Yes	-25.7	-25.5	-0.182			
MW340-125	-1.1	-0.27			Yes	-25.7	-25.8	0.091			
MW185-242	-1.1	-1.18		Yes		-25.7	-24.8	-0.818	Yes		
MW185-243	-1.1	-0.55		Yes		-25.7	-25.5	-0.182	Yes		
MW185-125	-1.1	-0.27		Yes		-25.7	-25.8	0.091	No		
MW185-381	-1.1	-0.45		Yes		-25.7	-25.6	-0.091	Yes		
MW185-236	-1.1	-0.55		Yes		-25.7	-25.5	-0.182	Yes		
MW66-242	-1.1	-0.64	Yes			-25.1	-24.8	-0.273	Yes		
MW125-236	-1.1	-0.27	Yes			-25.4	-25.5	0.091	No		

tRFLP profiles for groundwater

DOE, Paducah, Kentucky

				NATION.	AL LABORATORY
COCs ⁺	TCE < 1,000 - 8,000 μg L ⁻¹	⁹⁹ Tc ND- < 3,000 pCi L ⁻¹			
General Geochemistry	Aerobic; anaerobic near source	Carbon: natural organic matter	No detection of daughter or end products (e.g. DCE, VC, ethene and ethane)	High iron and other metals near source	Near neutral pH; above average tempera tures
EAPs*	Aromatic: 85% active	sMMO: 25% active			
qPCR	Aromatic: 95%	Methane (sMMO + pmoA): 80%	DHC: ND	vcrA, bvcA, tceA: ND	
CSIA	Mean episilon value of -1.1‰	Significant aerobic degradation in 6/8 well pairs examined			

KRCEE FFY 09-10 Project Status TCE FT Project: 80% Complete TCE FT Ph 2 Report Submission – December 2010 WP RECOMMENDATIONS

- 1. Collect off-site NEP microbial samples for to ensure presence and abundance of microbial populations similar to NWP
 - a. DAPI
 - b. RNA/DNA
 - c. Enzyme Probe analyses
 - d. Collect microbial samples from NEP at PGDP east security fence to determine impacts of near site low DO anomaly

2. Conduct biodegradation modeling for NEP, NWP, and SnT

- a. Develop matrix of probable future conditions at site relative to:
 - i. Plant shutdown
 - ii. Biotic and Abiotic Remedial Implementations

3. Establish near site and offsite transects for continuous monitoring of mass flux

- a. Recommended as metric to identify loss of contaminants in plume
- b. Encompass plume bounds
- c. Establish baseline ASAP
- d. Obtain technical concurrence on mass flux transect locations relative to P & T and other facilities
- e. Obtain technical concurrence on NW 99Tc mass flux relative to NW TCE Plume

4. Identify appropriate field techniques for evaluating microorganisms responsible for aerobic co-metabolism of TCE

a. Confirm field results with lab results

Collect REDOX condition and process geochemical parameters to establish on and offsite baselines

- 1. Sulfide (solid, groundwater)
- 2. H2S/HS/S (groundwater)
- 3. S (solid and solid surface)
- 4. Fe3+ (solid and solid surface)

KRCEE FFY 09-10 Project Status TCE FT Project: 80% Complete TCE FT Ph 2 Report Submission – December 2010

WP RECOMMENDATIONS (cont'd)

- 6. Collect additional geochemical parameters on-site to account for occurrence of multiple degradation processes
 - 1. H (gas, groundwater)
 - 2. CO₂ (gas, groundwater)
 - 3. Methane (gas, groundwater)
 - 4. Ethene (gas, groundwater
 - 5. NH₄ (groundwater)
 - 6. DOC (groundwater)
- 7. Evaluate water levels and Redox process geochemistry in the vicinity of facilities that are likely to impact the RGA
 - 1. Sewage treatment system facilities (basins and lagoons)
- 8. Collect soil and groundwater REDOX Geochemical data beneath, adjacent to, and downgradient of the C-616 lagoons
 - 1. Sulfide (solid, groundwater)
 - 2. H2S/HS/S (groundwater)
 - 3. S (solid and solid surface)
 - 4. Fe3+ (solid and solid surface)
- 9. Confirm/deny the occurrence of intrinsic Biotic/Abiotic degradation relative to NW 99Tc Plume and TCE Plumes
 - Collect water level and REDOX geochemical data in the vicinity of the C-616 Lagoons in order to evaluate potential impacts of C-616 lagoons on the UCRS in the vicinity of SWMUs 7/30

KRCEE FFY 09-10 Project Status TCE FT Project: 80% Complete TCE FT Ph 2 Report Submission – December 2010

WP RECOMMENDATIONS (cont'd)

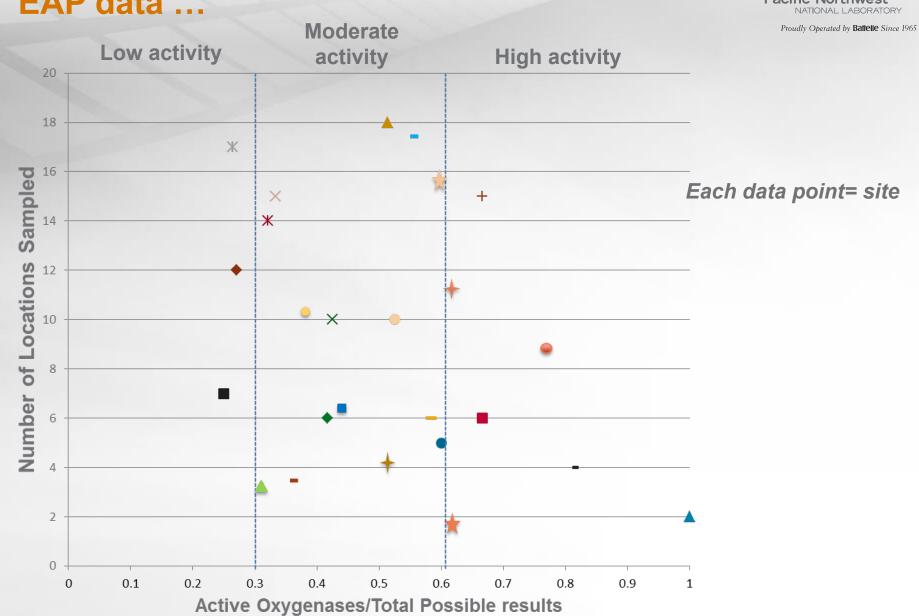
10. Collect geochemical parameter data in the area bifurcating the NW and SW Plumes

- a. Determine if anthropogenic losses from C-400 & Steam Facilities are cause of plume bifurcation
- b. Consider relative to costs of long-term costs of treating/controlling/monitoring 2 plumes
- c. Confirm/modify flow field in updated PGDP Groundwater Flow Model
- 11. Conduct continuous flow column tests to evaluate enhancement of aerobic cometabolism in DPP's.
 - a. Utilize readily available & economic Carbon source
- 12. Identify and instrument on-site and DPP Pilot test plot(s) to evaluate performance of potential applications of biological and abiotic remedial options
 - a. Conduct pilot tests for DPP aerobic co-metabolic enhancement (biostimulation)
 - b. Conduct pilot test for biogeochemical transformation process

Site characteristics

Co-contaminants

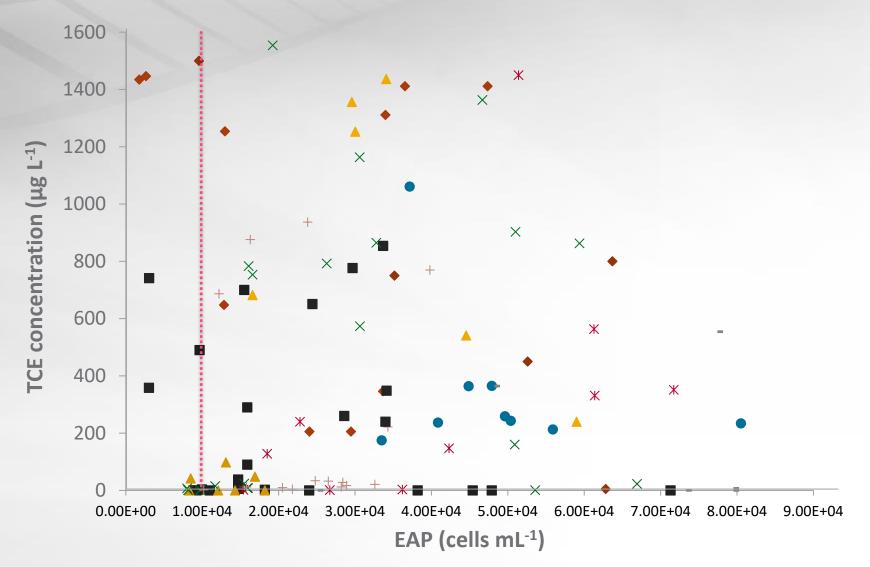
- Carbon tetrachloride
- ⁹⁹Tc, Sr, I, U, Cr
- PCE, DCE, VC
- 1,1,1 TCA
- Petroleum hydrocarbons
- Nitrate
- NDMA
- 1,4 dioxane
- MTBE
- EAPs & qPCR:


9 DOE, 15 DoD, 4 EPA, 8 Industrial sites (400 + MW locations)3 vapor impacted sites

- Rates (microcosms) @ 12 sites
- Coupled with CSIA @ 7 sites
- Line of evidence for MNA @ >20 sites

- Depth, extent of plume
 - Surface to 500 ft bgs
 - > 3 miles in length

Proudly Operated by Battelle Since 1965


EAP data ...

Enzyme activity (PA) & TCE concentration

Proudly Operated by Battelle Since 1965

8*10³ = activity level of significance

MW	EAP	DO	Methane	TCE	M-4B	2.67E+04	4.02	0.11	1
MW-9	1.55E+04	0.5	0	700	1-8A	1.56E+04	4.3	0.001	3240
MW197	6.28E+04	0.62	0.00	5	MW04I	2.40E+04	4.2		0
MW262	1.36E+04	0.6	0.00	4000	MW05	1.82E+04	4.2		2.2
1-45B	5.14E+04	0.03	0.29	1450	MW06S	2.12E+05	4.2		2500
M-2BR	1.54E+04	0.61	0.001	2.3	MW061	9.96E+03	4.2		3.5
2-429A	4.23E+04	0.15	0.002	147	MW07S	7.13E+04	4.2		0
TAN-28	3.71E+04	0.17	7185	1061	MW071	3.82E+04	4.2		0
TAN-29	4.49E+04	0.33	5968	364	MW08S	4.54E+04	4.2		0
TAN-41	4.96E+04	0.95	1624	259	MW081	4.79E+04	4.2		0
CRP-41B	1.63E+04	0.23	5.09	875.9	MW10	9.25E+03	4.2		0.16
SSM-16C	1.46E+04	0	0	3383.3	MW12	8.84E+03	4.2		0.16
SSM-11B	2.41E+04	0	0	8297.2	MW15	1.10E+04	4.2		0
TCM-5	3.26E+04	0.54	16.74	20.9	MW194	9.52E+03	5.43	0.00	1
MSG-05-01	2.52E+04	0	0.45	0	2-444A	3.62E+04	5.61	0.001	3
MSG-05-04	7.96E+04	0	0.45	7	P-2U	1.19E+04	5.58	0	8129.2
MSG-05-05	7.96E+04	0.1	500	0	PGW-25DU 	2.89E+04	6.6	0	17.0
1-12BR	1.94E+04	1.18	0.0010	5920	- 8 mg/	1.56E+04	6.16	0	8394.8
MW185	1.37E+04	1.96		3750	SB 7-24 00	1.39E+05	6.3	4.2	0
SSL-13B	2.48E+04	1.7	weth	ane	0 ^{SB 7-21} /SB 7-23	0 mg/L	6.9	1800	8
MW-7	1.59E+04	2.5		E 90	MOCEOO .	1,85E+04	6.8	0.001	128
MW-10	1.59E+04	2		E ₂₉ 9	-8500	UGF.10 E+04	6.98	175	213
MW125	6.37E+04	2.77	0.00	800	TAN-44	8.05E+04	6.91	110	234
MSG-05-11	7.34E+04	2.55	35	0	CRP-42B	3.98E+04	7.62	4.8	769.6
MW-4	1.47E+04	3.4	0	38	CRP-3D	3.43E+04	7.72	0.15	221.4
MW236	5.26E+04	3.36	0.00	450	TBG-3	1.58E+04	7.34	12.47	12.1
MW340	9.57E+03	3.51	0.00	1500	TRW-2	2.05E+04	7	7.8	9.8
MW381	3.52E+04	3.23	0.00	750	P-3L	2.65E+04	8.68	0	32.3
MSG-05-02	7.75E+04	3.1	0.7	554	TNX-3D	2.84E+04	8.47	0	28.1
MW-13	1.47E+04	4.5	0	5.3	P-2L	1.22E+04	8.84	0.23	686.7
MW66	9.66E+03	4.1	0	490	SSL-13C	1.02E+04	8.23	0	2.1

Microcosm Studies

Purpose: Obtain a degradation rate based on natural populations and a laboratory *microcosm.*

These are focused on overcoming the shortcomings of traditional laboratory microcosms. The innovative aspect is the ability to: (a) directly measure enzyme activity and (b) simultaneously measure enzyme activity and TCE degradation.

Microcosms:

- 10 to 20mL crimp top vials
- Un-amended groundwater or spiked with TCE
- No "excess" headspace (In situ conditions are mimicked as closely as possible)
- Treatments are performed in triplicate (60-80 vials, sampled destructively over time)
- In situ temperatures in the dark for up to 60 days.
- Samples taken for

GC (TCE, aromatics, methane), enzyme probes Oxygen, Molecular

VOC/contaminants: (1) MS for characterization and baseline concentrations (2) SPME (Solid Phase Microextraction)

Select microcosms to date ...

TCE Concentration	Co-contaminant	Half Life
<5–170 μg/L	PCE	~ 19.2 y
<5–5,900 μg/L	Chromium, acetone, benzene, toluene, xylene, metals	~ 15.1 y
<5-250 μg/L	None	~ 30.8 y
<5–6,000 μg/L	PCE, strontium, sewage	~ 6.7- 22.3 y
<5-30 μg/L	PCE, nitrate	~ 19.7 y
<5-250 μg/L	PCE, 111 TCA, 111DCA	~ 27.5 y
<5-8,600 μg/L	PCE, ⁹⁹ Tc	~ 31.4 y
<5-50 μg/L	PCE, nitrate, metals	~ 15.4 y
<5-1600 μg/L	Petroleum hydrocarbons	~ 17.6 y
<5-2700 μg/L	MTBE, PCE	~ 24.5 y
<5-10,000 μg/L	Carbon tetrachloride, nitrate	~ 38.4 y
<5-100 μg/L	Metals	~ 26.6 y
<5-2,800 μg/L	1,4-dioxane, hydrocarbons, PCR, DCE, VC	~ 17.4 y

Conclusions ...

- 80 to 100% of the samples analyzed are positive for organisms that are expressing the enzymes necessary for cometabolism
- EAP data to date DO NOT correlate with concentrations of carbon, oxygen, or contaminants
- EAP DO correlate well with other measurements of biological degradation: CSIA, FISH, qPCR HOWEVER EAP provide a measurement of activity that other tools cannot
- Fingerprinting and other tools can be used to quantify the proportion of the population that have the genes of interest and provide some level of prediction capability

Conclusions continued...

Cometabolism is occurring at some rate in all of the aerobic plumes tested to date

RATE studies suggest ½ life for TCE of 15-40 years ... when compared with CSMs, the data match plume behavior in the real world

 These tools provide clear evidence that degradation of contaminants can occur in situ, and when coupled with other tools/measurements, is occurring in situ

EAPs are powerful for evaluating long term attenuation, as well as performance over time of EA or MNA remedies and approaches

Where do we go from here ...

Proudly Operated by Battelle Since 1965

- Develop more sensors or probes for other contaminants
- Continue to push the envelope for developing methods for estimating rates- aerobic may be the turtle in the race but it continues to be an important degradation pathway as

(a) Primary means of degradation for many emerging contaminants AND

(b) the sustainable, 'green', long term management strategy for reducing or attenuating contaminants

- Develop better understanding of how tools inform one another (e.g. CSIA, geophysical)
- Start looking at the system and how MBTs can provide metrics of valuable, predictive information when plume and the dynamics are viewed as a system rather than its parts- INTEGRATION

Proudly Operated by Battelle Since 1965

ESTCP: Providing Additional Support for MNA by Including Quantitative Lines of Evidence for Abiotic Degradation and Co-metabolic Oxidation of Chlorinated Ethylenes (2015-2018)

The overarching objectives of the work described herein are to:

(1) Provide a method to readily and inexpensively acquire the data on magnetic susceptibility that is required to evaluate the abiotic degradation of chlorinated ethylenes on magnetite.

(2) Provide a method to readily and inexpensively acquire the data required to evaluate and quantify the aerobic degradation of TCE.

- Todd Wiedemeier
- John Wilson
- David Freedman
- Brady Lee
- Hope Lee

Proudly Operated by Battelle Since 1965

THANK YOU!

Hope.lee@pnnl.gov