

Image © Dennis Kunkel Microscopy, Inc.

Briefing

PGDP Citizens Advisory Board

Steve Hampson, Associate Director

KRCEE

for

PGDP TCE FT Project Team

June 19, 2008

4 Project Phases

Phase I - Data Evaluation

Phase II - Aerobic Degradation Investigation

Phase III - Stable Carbon Isotope Investigation

Phase IV - Abiotic Degradation Evaluation

Phase I - Data Evaluation

- Completed
- Screening to ID most-likely TCE attenuation processes
- Determination of TCE degradation rate in RGA
 - Utilized Existing NWP Data
 - · Calculated as "half-life"*
 - Range of Half-Life Rates from 4 26 years

^{*}half-life = time required for present concentration to be reduced by 50%

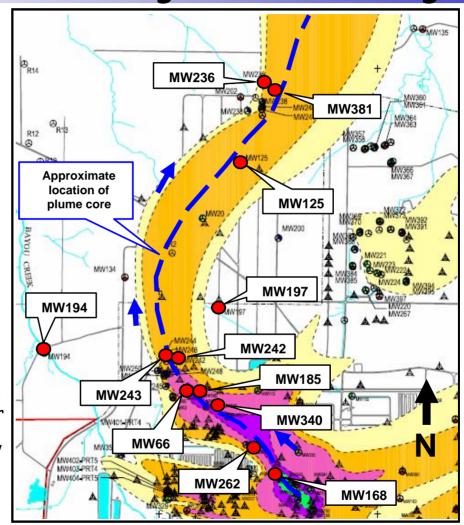
Phase II - Aerobic Degradation Investigation <u>Status of Activities</u>

- · Completed Scoping Document (May '07)
- · Completed Sampling (December '07)
- Completed Microbiological, Stable Carbon Isotope & Geochemical Laboratory Analyses (April '08)
- · SRNL Report due July 1, 2008
- · KRCEE White Paper due July 15, 2008

Phase II - Aerobic Degradation Investigation

Goals

- To identify biological degradation mechanisms active in the RGA (degradation by bacteria)
- 2. Provide DOE with recommendations for future Biological Degradation Investigation(s)



Phase II - Aerobic Degradation Investigation

Study Area & Well Locations

= TCE contaminant plume in Regional Gravel Aquifer

= NWP GW Flow is to NW from MW168 to MW66

Phase II - Aerobic Degradation Investigation

Background

- 1. The RGA is an aerobic "oxygen rich" aquifer
 - Dissolved Oxygen present in groundwater (throughout aquifer)
 - Under the right conditions, Aerobic "oxygen loving" microbes via process of Co-metabolism destruct TCE

Phase II - Aerobic Degradation Investigation

Background

- 2. Co-metabolism occurs in aerobic environments when a microbe produces enzyme(s) capable of TCE destruction
 - The microbe does not use TCE as a food source
 - The microbe does not benefit from the enzymatic destruction of TCE
- 3. Microbes are utilizing other substances for respiration/metabolism

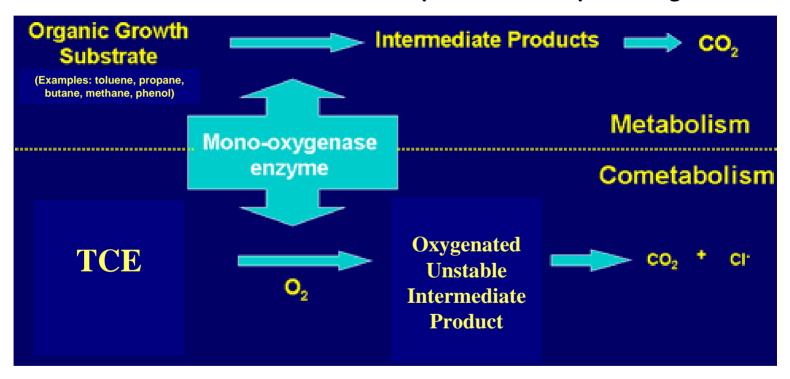
Phase II - Aerobic Degradation Investigation

<u>Background</u>

- 4. Aerobic microbes metabolize (oxidize) naturally occurring and man-made (anthropogenic) sources of organic material
- 5. Many sources of naturally available organic material
 - Organic material deposited with aquifer sediment
 - Decaying plant matter
 - · Decaying microbial biomass

Phase II - Aerobic Degradation Investigation

<u>Background</u>


- 6. Aerobic microbes, thru their metabolic processes, <u>add oxygen</u> (oxidize) to organic compounds
- 7. Addition of oxygen into the organic substances occurs via enzyme reactions ("oxygenase" enzymes)
- 8. Oxygenase enzymes fortuitously destroy TCE
- 9. Enzyme destruction of TCE produces endproducts carbon dioxide, chloride, and water
- 10. No harmful intermediate/end products (such as vinyl chloride in anaerobic degradation)

10

Phase II - Aerobic Degradation Investigation

Microbial metabolic process on top of diagram

Co-metabolism process on bottom of flow diagram (Source - http://wrhsrc.oregonstate.edu/briefs/brief_8.htm)

Phase II - Aerobic Degradation Investigation

Background

Pseudomonas putida

(Known to metabolize toluene in soil)

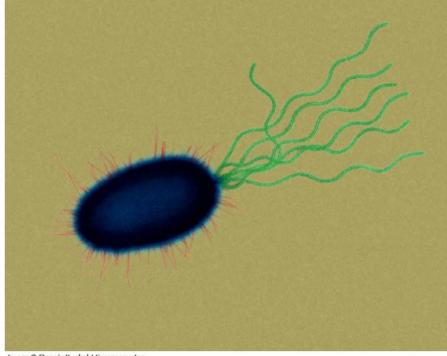
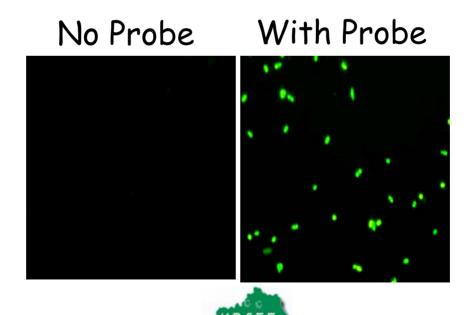


Image @ Dennis Kunkel Microscopy, Inc.



Phase II - Aerobic Degradation Investigation

Enzyme Activity Probes

Laboratory tools that evaluate the activity of the microbial oxygenase enzymes; cells appear fluorescent when the enzyme is active

13

Phase II - Aerobic Degradation Investigation

Monitoring Well	Aquifer Designation	Screened Interval Depth (ft bgs)	Qualitative data (6/4/7)		Toluene probes			
			sMMO probe Coumarin	Toluene probes	Quantitative data (fluorescent cells/mL)			Total –DAPI cells/mL
					3НРА	PA	Cinnamonitrile	
MW168	URGA	63 - 68	-	-	nd	2.41x10 ³	nd	1.90x10 ⁵
MW66		55 - 60	+	+++	1.43x10 ⁴	2.10x10 ⁴	9.14x10 ³	3.67×10 ⁵
MW194		47 - 52	+	+++	3.13x10 ³	9.52x10 ³	1.20x10 ⁴	1.76x10 ⁵
MW197		58 - 63	-	+	1.73x10 ⁴	6.28x10 ⁴	2.23x10 ³	1.59×10 ⁵
MW197 (resample)			na	na	5.03x10 ³	1.20x10 ⁴	2.04x10 ³	7.05x10 ⁵
MW185	MRGA	68 - 73	-	++	1.79x10 ⁴	1.37x10 ⁴	1.95x10 ³	9.75x10 ⁵
MW242		65 - 75	-	-	3.57x10 ³	1.24×10 ³	8.85x10 ³	7.76x10 ⁵
MW243		65 - 75	-	-	3.29x10 ³	4.61x10 ³	1.32x10 ³	4.27×10 ⁵
MW381		66 - 76	-	++	6.14x10 ⁴	3.52×10 ⁴	5.51x10 ³	9.66x10 ⁵
MW262	LRGA	90 - 95	+	+++	1.35x10 ⁴	1.36x10 ⁴	2.79x10 ⁴	3.52x10 ⁵
MW 262 (resample)			na	na	1.05x10 ⁴	1.22x10 ⁴	5.71x10 ³	2.84x10 ⁵
MW340		85.5 - 95.3	+	+	3.63×10 ²	9.57×10 ³	nd	7.25x10 ⁵
MW236		69.5 - 79.5	+	+++	3.24×10 ⁴	5.26x10 ⁴	9.28x10 ³	8.84x10 ⁵
MW125		78 - 88	+	++	1.39x10 ⁴	6.37×10 ⁴	2.03x10 ⁴	7.99×10 ⁵

URGA: Upper Regional Gravel Aquifer

MRGA: Middle Regional Gravel Aquifer

LRGA: Lower Regional Gravel Aquifer

3HPA: 3-hydroxy-phenylacetylene --> probe for toluene oxidase and related activity

PA: Phenylacetylene --> probe for toluene oxidase and related activity

cinnamonitrile: probe for tolulene dioxygenase and related activity

DAPI: 4',6-Diamidino-2-Phenylindole (double stranded DNA staining)

Highlight denotes that the toluene probe response was considered moderate (fluorescent activity > 3x103 cells/mL and < 8x103 cells/mL) - see text for explanation

Highlight denotes that the sMMO probe was significantly above background or the toluene probe response was considered significant (> 8x103 cells/mL fluorescent activity)

ft bgs- feet below ground surface

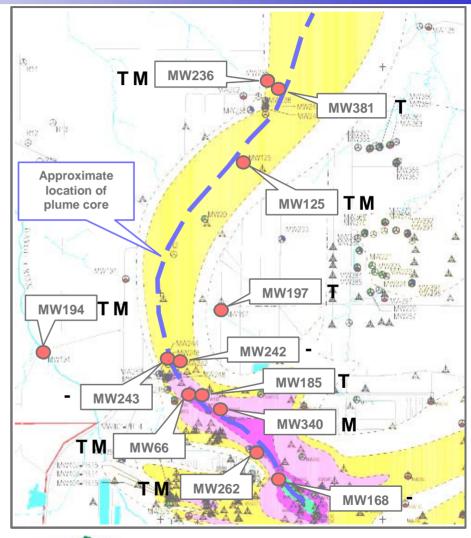
μg/L - micrograms per liter

pCI/L - picocuries per liter

cells/mL - per milliliter

TCE Fate & Transport Project Phase II - Aerobic Degradation Investigation

EAP Well Locations


EAP Results Legend

T = positive for Toluene degrading enzyme

M = positive for Methane degrading enzyme

Blank = not ID'ed*

*not ID'ed in qualitative results and/or did not meet 10⁴/mL quantitative criteria

Phase III - Stable Carbon Isotope Investigation

Stable Carbon Isotope (SCI) Background

- 1. Carbon in TCE molecule
- 2. Carbon in TCE molecule contains <u>stable</u>* carbon isotopes carbon-12 (12C) and carbon-13 (13C)
- 3. The weight of a ^{13}C atom is greater than the weight of a ^{12}C atom

*stable" indicates isotope does not undergo radioactive decay

Phase III - Aerobic Degradation Investigation

Stable Carbon Isotope (SCI) Background

- 4. Ratio of carbon-13 to carbon-12 ($^{13}C/^{12}C$) is specific to every material containing carbon, including TCE source material
- 5. Microbes prefer to utilize the "lighter" ¹²C isotope in metabolic processes
- 6. If biodegradation is occurring then the ratio of carbon-13 to carbon-12 ($^{13}C/^{12}C$) increases in the remaining TCE

Phase III - Stable Carbon Isotope Investigation

Stable Carbon Isotope (SCI) Evaluation

- 1. Pair each up-gradient well with a downgradient well along plume flowpath
- 2. Measure the ratio of carbon-13 to carbon-12 ($^{13}C/^{12}C$) in up-gradient well TCE
- 3. Measure the ratio of carbon-13 to carbon-12 ($^{13}C/^{12}C$) in down-gradient well TCE
- 4. Determine if the ratio of carbon-13 to carbon-12 ($^{13}C/^{12}C$) in down-gradient well is greater than that of up-gradient well

Phase III - Stable Carbon Isotope Investigation

Stable Carbon Isotope (SCI) Results

- 70% of SCI well-pair comparisons showed an increase in the carbon-13 to carbon-12 $(^{13}C/^{12}C)$ ratio in the downgradient well
- The increase in the carbon-13 to carbon-12 $(^{13}C/^{12}C)$ ratio in the downgradient wells supports the occurrence of biodegradation along the plume flowpath
- Provides third line of evidence that biodegradation is occurring

Phase II - Aerobic Degradation Investigation

Conclusions

- Three lines of evidence for occurrence of aerobic-cometabolic TCE degradation in RGA:
 - I. Decrease in concentrations of TCE along plume along plume flowpath (decrease >99Tc)
 - · First-order degradation rate calculation
 - II. Positive Enzyme Activity Probe results provide evidence that co-metabolism is occurring & contributing to TCE degradation
 - III. Stable Carbon Isotope well-pair evaluations support occurrence of co-metabolism in Northwest Plume

Phase II - Aerobic Degradation Investigation

Conclusions

- Aerobic co-metabolic degradation of TCE is occurring in the RGA
- Rate of TCE degradation in dissolved phase NWP is attributable in some degree to cometabolism.

Phase II - Aerobic Degradation Investigation

Aerobic BioDegradation Recommendations

- 1. Conduct study to quantify rate of cometabolism
- 2. Expand characterization of Northwest Plume
- 3. Characterize biodegradation in Northeast and Southwest Plumes
- 4. Reflect range of degradation rates (half-lives) in groundwater modeling
- 5. Evaluate potential enhancements to environment to increase degradation rate

Phase III - Stable Carbon Isotope Investigation

<u>Status</u>

- 1. DQO process completed
- 2. Applied DQO to evaluation of SCI data collected in support of Phase II Aerobic Investigation
- 3. Future activities to be scoped

Phase IV - Abiotic Degradation Investigation

<u>Status</u>

- 1. Compiled existing site data related to abiotic degradation process from historical activities
- 2. Conducted preliminary literature review
- 3. Future activities to be scoped

