Integrated Geophysical Imagining Techniques for Detecting Neotectonic Deformation in the Fluorspar Area Fault Complex of Western Kentucky

42nd Annual Meeting of the North Central Section of the Geological Society of America Evansville, Indiana April 24 and 25 2008 Abstract 137954

C. A. Blits University of Kentucky E. W. Woolery University of Kentucky K. A. Macpherson University of Kentucky S. Hampson KRCEE, University of Kentucky

Man marker Mr Marker I

Problem

- Accurate identification and characterization of neotectonic structure in western Kentucky has proved problematic
- Lack of surface expression due to long earthquake recurrence intervals and weak sediment
- Neotectonic structure may be influencing subsurface migration of a contaminant plume west of Paducah, KY

Objectives

- Characterize the geologic framework so an effective groundwater contamination assessment and mitigation can be formulated.
- Non-invasive integrated geophysical methods were used to image post-Paleozoic geologic configuration across the northwest contaminant plume.

Regional Geology

Study Area

•Located approximately 16 km west of Paducah in McCracken County, western Kentucky.

•Begins immediately north of the Paducah Gaseous Diffusion Plant and continues to within 1 km of the Ohio River.

mannan when the UK

General Geology and Stratigraphy

Methodology

1) SH-wave seismic reflection surveys 2) Dipole-dipole electrical resistivity arrays

Data Acquisition

Seismic Reflection Acquisition Parameters										
Line Name	Suvey Type	Near Offset	Shot Interval	Geophone Spacing	Sample Interval (ms)	Record Length (s)	Acq. Filt. Low Cut (Hz)	Acq. Filt Hi Cut (Hz)	Notch Filter (60 Hz)	Geophone (Hz)
UK-A31	SH-wave	0m	4m	4m	0.5	1.00	10	250	Yes	30
UK-B ₁	SH-wave	0m	4m	4m	0.5	1.00	10	250	Yes	30
UK-G1 ₁	SH-wave	0m	4m	4m	0.5	1.00	10	250	Yes	30
UK-G2 ₁	SH-wave	0m	4m	4m	0.5	1.00	10	250	Yes	30
UK-H	SH-wave	2m	2m	2m	0.25	1.024	15	Out	No	30
UK-I	SH-wave	4m	4m	4m	0.25	1.024	15	Out	No	30
UK-J ₂	SH-wave	2m	2m	2m	0.25	1.024	15	Out	Yes	30

1: Collected by Langston and Street (1997)

2: Collected by Wood, McDowell, Woolery and Wang (2000-2001)

Electrical Resistivity Imaging Acquisition Parameters									
Line Name	Array Type	Electrode Spacing (m)	Maximum n	Maximum Dipole	Measure Time (s)	Cycles	Maximum Error (%)	Maximum Repeat	Maximum Current (mA)
UK-001	Dipole- Dipole	6	8	6	1.2	2	2.0	1	2000
UK-002	Dipole- Dipole	6	8	6	1.2	2	2.0	1	2000
UK-003	Dipole- Dipole	6	8	6	1.2	2	2.0	1	2000
UK-004	Dipole- Dipole	2	8	6	1.2	2	2.0	1	2000

Processing

Generalized Steps for Processing Seismic Reflection Data					
Processing Step	Comment				
Reformat Data	Convert from DAT format to standard SEG-Y format				
Extract Data	Create file containing data from optimum window				
Exponential Gain Recovery	Correct for spherical divergence				
Mean Amplitude Scaling	Equalize traces				
Bandpass Filter	Attenuate noise outside of a range of frequencies				
Automatic Gain Control (AGC)	Normalize data within a given time window				
Geometry	Apply acquisition geometry header to traces				
Trace Kills	Remove noisy traces				
Trace Mutes	Remove refractions, direct waves, and ground roll				
Sort by Offset	Reorder data based into common-offset gathers				
Stack by Offset	Combine sorted files				
Velocity Analysis	Obtain a subsurface velocity model				
Normal Moveout (NMO)	Correct for source-receiver travel time differences				
Sort by CDP	Reorder data by common subsurface point				
Stack by CDP	Vertically sum NMO-corrected CDP gathers				
F-K Filter	Attenuate linear coherent noise				

Resistivity Inversion Settings					
Number of CG iterations	6				
Starting iteration of quasi Newtonian method	20				
Smoothness factor	10				
Damping factor	10				
Estimated noise	3%				
Robust data conditioner	1				
Robust model conditioner	1				
/inimum resistivity (Ohm m)	1				
Maximum resistivity (Ohm⋅m)	100000				
Model parameter width	1				
Model parameter height	1				
Resolution factor	0.2				
Stop Criteria:					
Number of iterations	8				
Maximum RMS error	3%				
Error reduction	5%				

WEST

EAST

UK-H and UK-001

UK-A3

EAST

WEST

EAST

Interpreted Faulting

Kilometer

•Series of high-angle faults striking approximately N30°E to N45°E outlining a series of asymmetric grabens.

•Greater displacements are observed in the bedrock reflector than within overlying sedimentary horizons.

•Early Paleozoic faulting reactivated as recently as the Pleistocene.

General Summary

- Over 7.8-km of seismic reflection data and 2-km of electrical resistivity data were acquired, processed, and interpreted.
- Imaged high-angle faults extending into Pleistocene horizons are consistent with results from other parts of the FAFC (Nelson et al., 1997, 1999; Langston et al., 1998; Woolery and Street, 2002, etc.).
- Structural features preferentially oriented with groundwater and contaminant migration.
- Additional geophysical/geological data are needed to reduce uncertainty.

-Martin marthant

Acknowledgements

 Thanks to the Kentucky Research Consortium for Energy and the Environment (KRCEE), the Department of Energy, and the Kentucky Geological Survey.