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Abstract 
 
Although probabilistic seismic hazard analysis (PSHA) is the most widely used method 
to assess seismic hazard and risk for various aspects of public and financial policy, it 
contains a mathematical error in the formulations. This mathematical error results in 
difficulties in understanding and application of PSHA. A new approach is presented in 
this paper. Seismic hazards derived from the new approach are consistent with the inputs 
in temporal and spatial characteristics. The hazard curve derived from the new approach 
is similar to those derived from flood and wind hazard analyses and can be used in risk 
analysis in a similar way. 
 
 
Introduction 
 
Probabilistic seismic hazard analysis (PSHA) has become the most widely used method 
to assess seismic hazard and risk for various aspects of public and financial policy since it 
was introduced by Cornell (1968) more than three decades ago. For example, the U.S. 
Geological Survey used PSHA to develop the national seismic hazard maps (Algermissen 
and Perkins, 1976; Frankel and others, 1996, 2002). These maps are the basis for national 
seismic safety regulations and design standards, such as the NEHRP Recommended 
Provisions for Seismic Regulations for New Buildings and Other Structures (BSSC, 
1998), the 2000 International Building Code (ICC, 2000), and the 2000 International 
Residential Code (ICC, 2000). The seismic design parameters for nuclear facilities, such 
as nuclear power plants, are also determined from PSHA (NRC, 1997).   
 
The use of PSHA has caused difficulty in selecting a hazard level (ground motion) or risk 
level (ground motion with a probability of exceedance in a period) for engineering 
designs and other policy applications, however. For example, the 2000 International 
Residential Code (IRC-2000), based on the 1996 USGS maps with 2 percent probability 
of exceedance (PE) in 50 years, gives a design peak ground acceleration (PGA) of about 
0.6g for Paducah, Ky., higher than the design PGA for San Francisco (Wang and others, 
2003; Malhotra, 2005). An extremely high ground motion (5.0g PGA or greater) would 
have to be considered for engineering design of the nuclear waste repository in Yucca 
Mountain, Nev., if PSHA is applied (Stepp and others, 2001; Bommer and others, 2004). 
The use of PSHA also has the results that “the seismic risk to life and property from 
code-designed buildings is very different in different parts of the country” (Malhotra, 
2005). 



The difficulty in using PSHA for engineering designs and policy applications is not only 
caused by lack of understanding and lack of data on earthquakes, but also by the technical 
deficiencies of PSHA. It is well known that different practitioners could derive greatly  
different PSHA results (SSHAC, 1997). SSHAC (1997) concluded “that differences in 
PSHA results are due to procedural rather than technical differences.” In other words, 
“many of the major potential pitfalls in executing a PSHA are procedural rather than 
technical in character” (SSHAC, 1997). Technical problems may still be one of the main 
reasons for the large differences, however (Wang, 2005). They have resulted in: (1) 
unclear physical basis; (2) obscure uncertainty; and (3) difficulty in determining a correct 
choice (Wang and Ormsbee, 2005; Scherbaum and others, 2005; Wang, 2005, in press 
(a), (b)).  
 
PSHA clearly inherits some technical deficiencies (Wang and others, 2003, 2005; 
Scherbaum and others, 2005; Wang and Ormsbee, 2005; Wang, 2005, in press (a), (b)). 
In this short note, the formulations of current PSHA will be reviewed and the probable 
causes of those technical deficiencies will be discussed. A new approach will also be 
presented and discussed.  
 
 
PSHA 
 
PSHA was originally developed to derive a theoretical hazard curve (i.e., ground motion 
vs. return period) for engineering risk analysis in consideration of the uncertainty in the 
number, sizes, and locations of future earthquakes (Cornell, 1968). Later, Cornell (1971) 
extended his method to incorporate the possibility that ground motion at a site could be 
different (i.e., ground-motion uncertainty) for different earthquakes of the same 
magnitude at the same distance, because of differences in site conditions or source 
parameters. Cornell’s (1971) was coded into a FORTRAN algorithm by McGuire (1976) 
and became a standard PSHA (Frankel and others, 1996, 2002). Following McGuire’s 
(1995) formulation, annual probability of exceedance (γ) of a ground-motion amplitude y* 
can be expressed as a triple integration over earthquake magnitude, epicentral distance, 
and ground-motion uncertainty as  
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where νj is the activity rate for seismic source j; fM (m),  fR (r), and fε (ε) are earthquake 
magnitude, source-to-site distance, and ground-motion density functions, respectively; ε  
is ground motion uncertainty expressed in a standard deviation (logarithmic); and 
P[Y≥y|m,r, ε] is the conditional probability that Y exceeds y*  for a given m, r, and ε. 
Equation (1) is very complex and only computed through numerical approaches. 
Equation (1) is further complicated by the nonunique interpretations of seismological 
parameters, which are commonly treated by a logic-tree in PSHA (SSHAC, 1997; Stepp 
and others, 2001; Scherbaum and others, 2005).  
 



In order to better understand the basics of PSHA, a special case in which all the sources 
are characteristic will be discussed here. For the characteristic sources, we have 
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where MC is magnitude of the characteristic earthquake, RC is the shortest distance 
between the site and source, and  εC  is the ground-motion uncertainty for MC  at the 
distance RC. Therefore, for characteristic sources, equation (1) becomes  
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where Tj is the average recurrence interval of the characteristic earthquake for source j. In 
current practice, the inverse of the annual probability of exceedance (1/γ), called return 
period (TP), is more often used and interpreted, as the ground motion (y*) that will occur 
at least once in that return period (Frankel and others, 1996, 2002; Frankel, 2004). From 
equation (5), TP is equal to  
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For a single characteristic source, we have  
 

],,|[
)( *

CCC
P RMyYP

TyT
ε≥

= .                                         (7) 

 
As demonstrated above, the return period (TP) or annual probabilities of exceedance (1/γ) 
of a ground motion (y*) is determined by the recurrence intervals of earthquakes and the 
conditional exceeding probabilities P[Y≥ y* | m, r, ε], particularly in the case of 
characteristic sources. In the current PSHA, P[Y≥ y* | m, r, ε] is assumed to be a log-
normal distribution and equal to  
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where ymr and σmr are median ground motion and associated standard deviation and 
dependence of earthquake magnitude (m) and epicentral distance (r) (Campbell, 1981, 



2003). FY,mr(y*) is the cumulative distribution function of ground motion y*. As shown in 
equation (8), FY,mr(y*) is equal to the cumulative distribution function of a log-normal 
distribution.   
 
According to Campbell (1981, 2003), y* is equal to 
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For peak ground acceleration (PGA) in the central and eastern United States, for 
example, Campbell (2003) had 
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for r≤70 km. As shown in equations (9) and (10), y* is a very complicated function of 
earthquake magnitude (m) and epicentral distance (r). As shown in Cornell (1968) and 
later in this paper, the cumulative distribution function for ground motion y*, which is 
also a function of m and r, is not equal to the cumulative distribution function of a log-
normal distribution, FY,mr(y*). This implies that equation (8) is mathematically incorrect.  
 
The mathematical error has led to that the ground-motion uncertainty is treated as a 
variable and intergraded in the determination of hazard curve (equation [1]) or using the 
ground-motion uncertainty to extrapolate the return period (TP) or annual probability of 
exceedance (γ) from the earthquake recurrence intervals (equations [6] and [7]). The 
ground-motion uncertainty is a spatial statistical characteristic of ground-motion 
measurements, whereas the recurrence interval of earthquake is a temporal characteristic 
of earthquake occurrence. In other words, the current PSHA uses the spatial statistical 
characteristics of ground motion to extrapolate the temporal characteristics of ground 
motion occurrence from the temporal characteristics of earthquake occurrence because of 
the mathematical error. This is problematic and cause difficulties in understanding of 
PSHA.  
 
For example, although there are only few thousand years of instrumental, historical, and 
geological records on earthquakes (Ti <104 years), PSHA could be used to derive the 
ground motions with return periods for up to 108 years (Stepp and others, 2001; Bommer 
and others, 2004; Abrahamson and Bommer, 2005; McGuire and others, 2005; Musson, 
2005). This can also be clearly shown in the case of a single characteristic source in the 
New Madrid Seismic Zone (Frankel, 2004; Wang and others, 2005). Paleoseismic 
interpretations suggest an average recurrence interval of about 500 years for large 
earthquakes (M7.0−8.0), similar to the 1811–1812 New Madrid events (Tuttle and others, 
2002), in the New Madrid Seismic Zone. These large earthquakes are of safety concern 
and can be treated as a single characteristic source in PSHA for the New Madrid area 
(Frankel and others, 1996, 2002; Frankel, 2004). PSHA could derive a range of return 
periods from 500 years to infinity for a single characteristic earthquake (Wang and 
others, 2003, 2005; Frankel, 2004). In other words, PSHA could create infinite ground-
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motion “events” with return periods ranging from 500 years to infinity for a single input 
earthquake.  
 
 
New Approach 

The main purpose of conducting seismic hazard analyses, PSHA in particular, is to 
estimate seismic risk. Seismic hazard and risk are two fundamentally different concepts 
(Wang, in press (b)). Seismic hazard is a phenomenon generated by earthquakes, such as 
surface rupture, ground motion, ground-motion amplification, liquefaction, and induced 
landslides that have potential to cause harm. Seismic risk, on the other hand, is the 
probability (likelihood) of experiencing a level of seismic hazard or damage caused by 
the hazard in a given exposure (time). The relationship between seismic hazard and risk 
is complicated and must be treated very cautiously. Seismic hazards are natural 
occurrences and can be evaluated from instrumental, historical, and geological records 
(or observations). Seismic risk depends not only on seismic hazard and exposure, 
however, but also on the models (i.e., time-independent [Poisson] and time-dependent 
ones) that could be used to describe the occurrences of earthquakes. Seismic hazard 
estimates can be dramatically different if different methods and statistical parameters are 
used. The same is true for seismic risk estimates. Hence, it is necessary to review the 
definitions of seismic hazard and risk. 

Seismic risk was originally defined in earthquake engineering as the probability that 
modified Mercalli intensity (MMI) or ground motion at a site of interest will exceed a 
specific level at least once in a given period, a definition that is analogous to flood and 
wind risk (Cornell, 1968; Milne and Davenport, 1969). Poisson distribution is a common 
model for describing occurrences of these natural events (i.e., winds, floods, and 
earthquakes) (Cornell, 1968; Milne and Davenport, 1969; Gupta, 1989; Liu, 1991). 
Although the Poisson model may not be the best model for describing earthquake 
occurrence, especially large earthquake occurrence in which the tectonic stress is released 
when a fault fails and must rebuild before the next one can occur at that location (Stein 
and Wysession, 2003), it is the most used model for seismic risk analysis. According to 
the Poisson model (Cornell, 1968; Stein and Wysession, 2003), the probability of n 
earthquakes of interest occurring in an area or along a fault during an exposure time (t) in 
years is 
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where τ is the average recurrence interval (or average recurrence rate, 1/τ ) of earthquakes 
equal to or greater than a specific magnitude (M). The probability that no earthquake will 
occur is 
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The probability of at least one (one or more) earthquake equal to or greater than a specific 
magnitude (M) occurring within t years is   
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Equation (10) is used to calculate seismic risk for earthquakes in terms of magnitude (M) 
with a percent PE in t years. In other words, the level of hazard is expressed in terms of 
earthquake magnitude (M) and its average recurrence interval (τ) or average recurrence 
rate (1/τ). For engineering purposes, the level of hazard in terms of ground motion (peak 
ground acceleration [PGA] and response accelerations) is desired, however. In other 
words, engineers need to know the ground motions (consequences) of earthquakes at a 
given point. This is identical to the situation in flood and wind engineering, in which the 
consequences of floods and winds, such as peak discharge and 3-second gust wind speed, 
must be known at a specific site (Sacks, 1978; Gupta, 1989; Liu, 1991).  
 
Ground motions and their recurrence intervals or recurrence rates can be determined 
through seismic hazard analysis (Cornell, 1968; Milne and Davenport, 1969). Milne and 
Davenport (1969) developed an empirical method which derives a relationship between 
ground motions and their recurrence intervals from instrumental and historical records. A 
similar method was recently used in seismic hazard and risk assessment in the Tokyo, 
Japan, area (Stein and others, 2005). As pointed out by Milne and Davenport (1969), this 
method may not be applicable in areas where historical data are insufficient. An 
alternative method was proposed by Wang (in press (a), (b)) and is briefly described here.  
 
Similar to flood occurrences (Gupta, 1989) and wind storm occurrences (Liu, 1991), 
earthquake occurrences follow the well-known Gutenberg-Richter magnitude-frequency 
relationship: 
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where N is the cumulative number of earthquakes with magnitude equal to or greater than 
M occurring yearly, and a and b are constants. Equation (11) can be rewritten as  
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where α=2.303a and β=2.303b. The Gutenberg-Richter relationship describes the 
relationship between the average recurrence rate (N) or recurrence interval (1/N) and 
earthquakes exceeding a specific magnitude (M). Therefore,  
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Figure 1 shows a Gutenburg-Richter curve with a=3.15 and b=1.0 for earthquakes with 
magnitude between M5.0 and M8.0. According to equation (13), the average recurrence 
intervals (τ) are 709 and 7,091 years for earthquakes of magnitude equal to or greater 



than 6.0 and 7.0, respectively. These calculations result in 6.8 and 0.7 percent 
probabilities of exceedance for earthquakes of magnitude 6.0 and 7.0 in 50 years, 
respectively.  
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Figure 1. Gutenburg-Richter curve.  

 
 
Also, in seismology, observed ground motion (yε) with an uncertainty (ε=0 [median], ±σ, 
±2σ), at a site from an earthquake of magnitude M with an epicentral distance R can be 
described by a ground-motion attenuation relationship (Campbell, 1981, 2003), such as 
equation (9). From equation (9), M can be expressed in terms of R and yε as 
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As shown in equation (10), the relationships between M, R, and yε are quite complicated, 
and the function, M(R, yε), can only be solved numerically. Combining equations (16) 
and (17) results in  
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Equation (18) describes a relationship between the earthquake recurrence interval (τ) and 
the ground motion (yε) with an uncertainty (ε) and distance (R). For a given R, equation 
(18) describes a relationship between ground motion with an uncertainty and its 
recurrence interval: a hazard curve. Using the PGA attenuation relationship for the 
central and eastern United States, equation (10), and σ which is dependent of earthquake 
magnitude and in the range of 0.6 to 0.9 (Campbell, 2003), a PGA hazard curve can be 
derived at a point of interest from a known source.  
 



Figure 2 shows PGA hazard curves for a site 40 km from a point source in which 
earthquake occurrences follow the Gutenburg-Richter relationship shown in Figure 1. 
From Figure 2, the median PGA’s with the average recurrence intervals of 709 and 7,091 
years are 0.09 and 0.2g, respectively. In terms of median PGA, these calculations result 
in 6.8 and 0.7 percent probabilities of exceedance for 0.09 and 0.2g in 50 years, 
respectively.  Similarly, in terms of median±σ PGA, Figure 2 will result in 0.04 and 
0.19g, and 0.10 and 0.39g, for 6.8 and 0.7 percent probabilities of exceedance in 50 
years, respectively.   
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Figure 2. PGA hazard curves for a site 40 km from a point source. Square – median; 
Diamond – median-σ; Triangle – median+σ.   

 
 
As shown above, the hazard curve in terms of ground motion can be derived directly 
from the Gutenburg-Richter and ground-motion attenuation relationship. This derivation 
[equation (18)] is only valid for a single point source or a source with constant distance, 
however. In general, the size and location of a future earthquake are uncertain. 
Uncertainties in the size and location of a future earthquake along a line source can be 
considered by using probability theory. For a given R=r, the conditional probability that 
ground motion Y at a site exceeds yε is  
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From equations (9) and (17), we have  
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For the Gutenburg-Richter distribution, the cumulative distribution function of 
magnitude, FM(m), is 
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where m0 is the lower bound magnitude. Hence, we have 
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According to the total probability theorem, the probability that ground motion Y at the 
site exceeds a given yε from a line source is 
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where fR(r) is the probability density function of R and has  
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The average annual probability that ground motion Y at the site exceeds a given yε from a 
line source is equal to  
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where ν is the activity rate (Cornell, 1968; McGuire, 1995) and equal to 
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For all line sources, the total average annual probability that ground motion Y at the site 
exceeds a given yε is equal to 
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If all sources are characteristic, equation (27) will become 
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For a single characteristic source, equation (28) becomes  
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Figure 3 shows a hypothetical site 40 km (minimum) from a line source. It is assumed 
that earthquake occurrences along the line source follow the Gutenburg-Richter 
relationship shown in Figure 1. Equation (27) can be applied to derive a PGA hazard 



curve from the line source (Fig. 3). Figure 4 shows the hazard curves for the median and 
median±σ PGA at 40 km from the line source (Fig. 3). From Figure 4, the median PGA’s 
with the average recurrence intervals of 709 and 7,091 years are 0.07 and 0.15g, 
respectively. In terms of median PGA, these calculations result in 6.8 and 0.7 percent 
probabilities of exceedance for 0.07 and 0.15g in 50 years, respectively.  Similarly, in 
terms of median±σ PGA, Figure 4 will result in 0.03 and 0.14g, 0.08 and 0.3g for 6.8 and 
0.7 percent probabilities of exceedance in 50 years, respectively.   
 
 

 
Figure 3. A hypothetical site 40 km from a line source. 
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Figure 4. PGA hazard curves for a site 40 km from a line source. Square – median; 
Diamond – median-σ; Triangle – median+σ.   

 
 
As shown in Figure 1, the recurrence intervals of earthquakes vary from about 100 years 
for earthquakes equal to or greater than 5.0, to 10,000 years for earthquakes equal to or 

rmin=40 km 

Site (0,0) 

(50,50) 

(50,-50) 

 



greater than 8.0. These intervals determine that the range of recurrence intervals of the 
ground motions should also be between 100 and 10,000 years, because the ground 
motions are the consequences of those earthquakes. The new approach derives the ground 
motions with the recurrence intervals between 100 and 10,000 years (Figs. 2, 4). 
Therefore, in terms of temporal characteristics, the outputs from the new approach are 
consistent with the inputs. Particularly in the case of a single characteristic source, the 
output recurrence interval is equal to the input [equation (29)]. 
     
 
Discussion 
 
Ground motion is a consequence of earthquake. Occurrence of a ground motion at a site 
must be associated with occurrence of an earthquake. Hence, the temporal characteristics 
of ground motion occurrence must be consistent with that of earthquake occurrence. The 
current PSHA does not derive the temporal characteristics of ground motion occurrence 
that is consistent with that of earthquake occurrence because the treatment of the ground-
motion uncertainty: using the spatial statistical characteristics of ground motion to 
extrapolate the temporal characteristics of ground motion from the temporal 
characteristics of earthquake occurrence, however. As discussed in this paper, this 
extrapolation is caused by a mathematical error in the formulations: the cumulative 
distribution function for ground motion attenuation relationship (function of magnitude 
and distance) is incorrectly equated to the cumulative distribution function for ground 
motion at a specific point (log-normal distribution). This mathematical error causes 
difficulties in understanding and applications of PSHA.  
 
The new approach presented in this paper will derive ground motions that have the 
temporal characteristics consistent with that of earthquakes. Although being developed 
differently, the new approach is similar to the original PSHA by Cornell (1968). In fact, 
the new approach is identical to Cornell’s (1968) if the ground-motion uncertainty is not 
considered (ε=0.0). For ε=0.0, according to Cornell (1968), the total probability that the 
MMI, I, at a site is equal to or greater than a given i from a line source is  
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where I(M,R) is the intensity attenuation relationship and equal to 
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where d1, d2, and d3 are constants. Therefore, we have  
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Similarly for a ground motion y: 
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where b1, b2, and b3 are constants, and we have 
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Similarly, Cornell (1968) derived the MMI that had the temporal characteristics 
consistent with that of the input earthquakes: Figure 4 in Cornell’s (1968). 
 
The new approach should be easily expanded to consider the non-unique interpretations 
of seismological parameters, which are commonly characterized by a logic-tree in PSHA 
(SSHAC, 1997; Stepp and others, 2001; Scherbaum and others, 2005). The hazard curve 
derived from the new approach is similar to those derived from flood and wind hazard 
analyses (Gupta, 1989; Liu, 1991) and can be used in risk analysis in a similar way. 
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