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ABSTRACT OF THESIS 

 

LITHOLOGIC AND STRATIGRAPHIC  

COMPILATION OF NEAR-SURFACE SEDIMENTS FOR THE  

PADUCAH GASEOUS DIFFUSION PLANT, MCCRACKEN COUNTY, KY 

 

The Jackson Purchase region of western Kentucky consists of Coastal Plain sediments 
near the northern margin of the Mississippi Embayment. Within this region is the 
Paducah Gaseous Diffusion Plant (PGDP), a uranium enrichment facility operated by the 
US Department of Energy. At PGDP, a Superfund site, soil and groundwater studies 
have provided subsurface lithologic data from hundreds of monitoring wells and borings. 
Despite preliminary efforts by various contractors, these data have not been utilized to 
develop detailed stratigraphic correlations of sedimentary units across the study area. In 
addition, sedimentary exposures along streams in the vicinity of PGDP have not been 
systematically described beyond the relatively simple geologic quadrangle maps 
published by the US Geological Survey in 1966–67. This study integrates lithologic logs, 
other previous site-investigation data, and outcrop mapping to provide a compilation of 
near-surface lithologic and stratigraphic data for the PGDP area.  A database of 
borehole data compiled during this study has been provided to PGDP for future research 
and archival.  Developments in understanding near-surface geology include the adoption 
of nomenclature used by the Illinois State Geological Survey (ISGS), which separates 
the “Continental Deposits” into two distinct units, the Mounds Gravel and Metropolis 
Formation, based on their unique depositional histories.  Additionally, faulting presented 
on the preliminary Joppa (IL) 7.5-minute quadrangle map, but not mapped on the Joppa 
(KY) 7.5-minute quadrangle map, appears to have impacted deposition of post-Eocene 
sediments at the site.  These faults are co-linear to zones of irregularity noted in the 
Cretaceous McNairy Formation structure elevation map created during this study, thick 
zones of the Mounds Gravel noted in an isopach map from this study, and contaminant 
plume maps created previously by contractors.   
 
Key Words: 
Geologic Mapping, Jackson Purchase, Mounds Gravel, Metropolis Formation, Paducah 
Gaseous Diffusion Plant 
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Chapter 1. Introduction 
 
Location and History 

The Jackson Purchase region of western Kentucky consists of Coastal Plain 

sediments outlined by the northern extent of the Mississippi Embayment (Figure 1.0).  

The Paducah Gaseous Diffusion Plant (PGDP), a uranium enrichment facility operated 

by the United States Department of Energy (USDOE) (CH2M Hill, 1992; Clausen et al., 

1992), resides in this region, in McCracken County, Kentucky (Jacobs, 1997) (Figure 1.1). 

PGDP began operation in 1952 and enriches uranium fuel for use in nuclear 

reactors.  Fuel is formed from UF6 gas, a mixture of uranium 235 (235U) and fluorine (F) 

that passes through cascade diffusion process to achieve enrichment.  Unfortunately, 

because of this processing there is now a groundwater contamination problem on and 

around the PGDP facility.       

On May 31, 1994, PGDP was designated a Superfund site, making it a priority for 

cleanup among contaminated sites in the United States (Jacobs, 1997).  The primary 

contaminants of concern at the site are trichloroethene (TCE) and technetium-99 (99Tc).  

TCE was used as a degreasing agent and 99Tc was formed at the site as a byproduct of 

processing nuclear fuel rods (Sweat, 2000).  Neither contaminant is being used or 

generated at the site now due to changes in practice, but previous releases have 

resulted in dissolved-phase transport of both contaminants into plumes stretching 

beyond the borders of the facility (Sweat, 2000).  This off-site contaminant migration has 

impacted groundwater and surface water quality.  Previous monitoring has determined 

that plumes propagated north from the facility toward the Ohio River (Clausen et al., 

1992; Jacobs, 1997).    

Groundwater contamination by TCE and 99Tc has resulted in monitoring and 

remediation by PGDP contractors under the oversight of the United States 

Environmental Protection Agency (USEPA).  Through the 1990’s, site investigations and 

groundwater studies have sought answers to site-specific problems in and around the 

facility ranging from contaminant plume projection to waste cell siting (EDGe, 1989; 

CH2M Hill, 1992; Clausen et al., 1992; Jacobs, 1997).  These studies contain shallow 

lithologic data from hundreds of monitoring wells and borings.  Because the data were 

collected for different purposes, the data do not have a consistent style or use the same 

nomenclature. Detailed stratigraphic correlations of sedimentary units have not 

previously been developed from data gathered at the site.   
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Figure 1.1:  Map of study area indicating property boundaries and local roads          

(CDM and JEG, 1995). 
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Additionally, sedimentary exposures along streams in the vicinity of PGDP have not 

been systematically described beyond the broad, formation-scale mapping of 7.5-minute 

quadrangles published by the United States Geological Survey (USGS) in 1966–67. 

 

Purpose 

This project was funded under a USDOE grant through the Kentucky Research 

Consortium for Energy and Environment (KRCEE) with a goal of locating and compiling 

available data into a common database from which those data could be accessible to 

future researchers.  The second goal of this project was to create a site-wide 

stratigraphic framework for the Late Tertiary through Quaternary sediments within which 

the Regional Gravel Aquifer (RGA) is located.  The RGA is the primary pathway of 

lateral contaminant transport within the study area (Clausen et al., 1992; Jacobs, 1997).  

By understanding the extent, potential interconnection of stratigraphic units, and 

sedimentology of the RGA and confining units at the site, more realistic projections of 

groundwater flow may be possible in future research.  To achieve these goals I utilized 

the newly created geologic database, reviewed previous studies, and conducted 

additional field investigations across the region.  

 

General Geology 

The geologic units in the shallow subsurface in the study area are Tertiary to 

Quaternary fluvial, lacustrine, and eolian sediments (Olive, 1966; Finch, 1967; Clausen 

et al., 1992). These sediments are associated with deposition/erosion of the Illinois 

Basin, Mississippi Embayment, glacial slack-water lakes, and the ancestral Tennessee 

River (Olive, 1966; Finch, 1967).   

 

Stratigraphy 

Mississippian limestone bedrock is unconformably overlain by Upper Cretaceous 

sediments in the study area (Figure 1.2) (Olive, 1980; Clausen et al., 1992; Langston 

and Street, 1998).  The Tuscaloosa Formation is the first stratigraphic unit overlying this 

regional unconformity.  The Tuscaloosa consists of well-graded chert gravel (rubble 

zone) with a sandy to clayey matrix (Jacobs, 1997).  Tuscaloosa sediments, where 

present, are overlain by micaceous clays and interlensing fine to medium-grained sands 

and silts of the Upper Cretaceous McNairy Formation (Olive, 1980; Clausen et al., 1992).   
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Figure 1.2:  Stratigraphic column of geologic units above the Mississippian 

 bedrock unconformity (modified from Jacobs, 1997). 
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The Paleocene Clayton Formation is only distinguished from the McNairy Formation in 

the study area by palynological evidence (Davis et al., 1973).  Palynological 

investigations were not part of this study; therefore, I follow methods of Olive (1966) in 

combining the Clayton Formation into the McNairy Formation.  The undifferentiated 

McNairy Formation unconformably overlies the Tuscaloosa Formation where present 

and directly overlies limestone bedrock where the Tuscaloosa Formation is absent.  

Subsurface investigations at the plant indicate that the McNairy Formation consists of 40 

to 50 percent sand with an average thickness of 225 feet (ERCE, 1990).  Davis (1996) 

indicates the McNairy consists of three members in the study area: an upper silt and 

sand member, a middle silt and clay member referred to as the Levings Member, and a 

lower sand member.   

The McNairy contains more clay near Paducah than in the southeastern portion 

of the Jackson Purchase (Davis et al., 1973).  Because of its clay content the unit forms 

a semi-confining surface underlying the RGA (Clausen et al., 1992).  These Cretaceous 

deposits have been interpreted as deltaic in origin and center near the northeast edge of 

the embayment, grading to marine sands and clays to the southwest (Pryor, 1960).  

Reconstructions of the paleo-geography during the Cretaceous support this 

interpretation (Figure 1.3).  The Cretaceous-Tertiary extinction event (KT boundary) 

occurred at the end of the Cretaceous (~65.5 Ma).  This event was not described in 

literature reviewed during the study and no distinct indicators were noted during the 

study.          

The Paleocene Porters Creek Clay unconformably overlays the McNairy 

Formation and is present to the southeast of PGDP.  The Porters Creek Clay is 

characterized as a dark gray, slightly to very micaceous, glauconitic clay containing 

variable amounts of fine-grained sand with a substantial silt component (Lambert, 1966; 

Olive, 1966; Finch, 1967).  The Porters Creek Clay (Jacobs, 1997) was interpreted by 

Olive (1980) to have formed during marine to fresh-water sedimentation from a sea that 

covered much of the embayment during this time.   

Eocene sands of the Wilcox, Claiborne and Jackson Formations unconformably 

overlay the Porters Creek Clay and are undifferentiated in the study area.  Eocene 

sands are generally very thin north of US Highway 60 (CH2M Hill, 1992).  These 

sediments are actually comprised of interlensing sand- to clay-size grains and are only 

found in the southernmost portion of the study area (Clausen et al., 1992).  
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Figure 1.3:  Paleogeography of North America during the Cretaceous 

 (Levin, 2003). 
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As the ancestral Tennessee River became incised in the region, the Porters 

Creek Clay and Eocene sands were removed from a large portion of the study area, 

leaving a terrace to the south of Grahamville where the northernmost exposures of these 

units occur (Figure 1.2, 1.4).  Olive (1966, 1980) labeled the sediments overlying the 

Cretaceous to Eocene sediments the Continental Deposits, which were further 

subdivided into upper and lower members by later investigators (EDGe, 1989; CH2M Hill, 

1992).  The Lower Continental Deposits are stratigraphically equivalent to the Mounds 

Gravel as designated by the Illinois State Geological Survey (ISGS) or the Lafayette 

Formation (Lafayette gravel) in other parts of the region (Langston and Street, 1998).  

For the purposes of this study the Mounds Gravel designation will be used for 

nomenclature, as this unit has been extensively mapped in southern Illinois.  Mounds 

Gravel deposits unconformably overlie Paleocene and Eocene units in the southern 

portion of the site and the McNairy Formation north of the truncation of the Porters Creek 

Clay (Figure 1.4).  Mounds Gravel deposits consist of reddish-orange to brown chert 

clasts with a glossy patina.  Clasts occur within a matrix of poorly sorted sands 

containing lenses of clay and silt (Potter, 1955a; Potter, 1955b; Clausen et al., 1992, 

Nelson, 2005).  The unit has been interpreted as a deposit of high-energy braided rivers 

(Potter, 1955a), which occupied a broad steep-sided valley formed by the ancestral 

Tennessee River (Nelson et al., 1999).  Olive (1980) recognized four erosional surfaces, 

three of which have been identified as terraces at the site within the RGA (Clausen et al., 

1992).  Nelson et al. (2002) indicates that the lower terraces formed under the incised 

flat and broad deep-valley conditions proximal to the current course of the Ohio River.  

These lower terraces occur at a base elevation of 245 to 310 feet above mean sea level 

(msl) (Clausen et al., 1992).   

Capping the Mounds Gravel in the study area is the Metropolis Formation 

(Nelson et al., 1999), also commonly referred to as the Upper Continental Deposits by 

PGDP contractors (Clausen et al., 1992; Jacobs, 1997) and mapped as Quaternary 

sands and silts by Finch (1967).  The Metropolis Formation is primarily silt and sand with 

lesser components of clay and gravel (Nelson et al., 1999) in a massive to finely 

laminated matrix (Clausen et al., 1992).  The average thickness of the Metropolis 

Formation is 15 to 55 feet at the site.   
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Figure 1.4:  Structural elevation map of the Porters Creek Clay illustrating relief 

 and truncation of the unit (Jacobs, 1997). 
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The unit is generally light gray to yellowish-brown and commonly shows evidence of 

cylindrical vertical burrows (Nelson et al., 1999; Nelson, 2006).  Gravels in the Metropolis 

Formation most likely were derived from the underlying Mounds Gravel, but can be 

differentiated by rounding, pitting, and a complete or substantial loss of the glossy patina 

indicative of Mounds Gravel (Nelson et al., 1999; Nelson, 2005).  The contact between 

Mounds Gravel and Metropolis Formation is often gradational across an interval of 3 to 

15 feet (Nelson, 2005).  Clausen et al. (1992) note that the Metropolis Formation may 

locally be laterally traceable along erosional contacts, as indicated by WLA (2005).  

However, Nelson (2005) states that lateral traceability cannot be expected regionally 

because of the small scale of bed forms (5 to 15 feet).  Deposition of the Metropolis 

Formation is thought to have occurred early in the Pleistocene as the ancestral 

Tennessee River became diverted, leaving slow-moving, underfit meandering streams to 

flow down the ancestral Tennessee River valley (Nelson et al., 2003).  These rivers were 

much narrower than the preceding braided streams leading to laterally heterogeneous 

deposits.  Slow sediment aggradation in this environment led to the extensive 

weathering, bioturbation and soil formation seen (Nelson et al., 1999, 2002).    

A series of loess deposits, averaging 5 to 25 feet in thickness, blankets the 

majority of the site (Finch, 1967; Clausen et al., 1992; US DOE, 1997).  These deposits 

are fine-grained and interpreted as glacial eolian sediments, similar to the underlying 

Metropolis Formation (Upper Continental Deposits) (Finch, 1967).  Loess deposits are 

separated by buried soils that indicate unconformities (Olive, 1980).   Loveland, Roxana 

and Peoria are the principal loess units at the site (Follmer, 2005).  The Loveland formed 

during Illinoisan glaciation and is the oldest loess unit at the site (Follmer, 2005).  The 

Sangamon geosol caps this unit and is a useful marker bed between the Illinoisan and 

Wisconsin-stage loess deposits.  Wisconsin-age Roxana loess lies above the Sangamon 

geosol and is darker brown to reddish silt that is coarser than the Loveland loess.  The 

Peoria is very similar to the older Loveland unit.  This uppermost loess has been carbon-

14 (14C) dated throughout the Midwest with an age of 13 to 24 thousand years before the 

present (ka) (Follmer, 2005).  The Peoria loess is a massive yellowish silt (Follmer, 

2005).  The Roxana and Peoria loesses are commonly combined into an informal unit 

known as the Wisconsin loess where intervals are thin and stratigraphic leakage has 

occurred (Follmer, 2005). Reworking of deposits in the active Ohio River floodplain has 

left Holocene alluvium deposits in lowland areas throughout the northern sections of the 

study area (Finch, 1967).   

 10 



 

Structure 

 The Jackson Purchase region consists of a thick package of flat-lying unlitihified 

sediments underlain by Mississippian bedrock, regionally dipping toward the center of 

the Illinois Basin (Clausen et al., 1992).  Olive (1980) states that sediments overlying 

bedrock form an unconformity parallel to the outline of the Mississippi Embayment and 

dip towards the axis of the embayment.  It is estimated that the McNairy and Porters 

Creek Clay dip 30 to 35 feet per mile towards the axis of the embayment while the 

younger Eocene sediments dip 25 feet per mile in the same direction (Olive, 1980).  

Seismicity in the area is a function of the New Madrid Seismic Zone (NMSZ) lying 

to the southwest and the Fluorspar Area Fault Complex (FAFC) to the northeast (Figure 

1.0).  Nelson et al. (1999) postulate that these complexes formed during failed Cambrian 

rifting of the Reelfoot Rift, an arm of the currently active NMSZ.  The Pascola Arch also 

developed during the Cretaceous due to activation of faults along the Reelfoot Rift.  The 

arch formed a highland in the Jackson Purchase region (Langston and Street, 1998).  

Mapping in Southern Illinois has indicated displacement of Pleistocene strata along 

FAFC faults.  Several of these faults are projected into western Kentucky (Langston and 

Street, 1998; Nelson et al., 1999; Woolery and Street, 2002).  Faults of the FAFC in 

southern Illinois are dominantly high-angle normal faults striking to the northeast with 

fewer high-angle reverse and oblique-slip faults (Nelson et al., 1999).  These faults 

bound narrow pull-apart grabens following the same strike (Nelson et al., 1999). 

 Olive (1966) mapped soft-sediment deformation in the study area within the 

Porters Creek Clay and other researchers have noted soft-sediment deformation in both 

the Porters Creek Clay (Davis, 2005; Amick, 2005) and the clay facies of Quaternary 

deposits (Clausen et al., 1992; WLA, 2006).  Langston and Street (1998) suggest that 

faulting appears to have propagated from bedrock into the Mounds Gravel in the 

northern portion of the study area. Woolery and Street (2002) imaged near-vertical 

northeast-trending faults displacing Quaternary sediments within 25 feet of the ground 

surface using shear-wave seismic reflection methods at the site.  These features support 

an interpretation of faulting from the FAFC of southern Illinois into western Kentucky 

presented by Nelson et al. (1999) and are consistent with major fault displacement of the 

Quaternary strata. 
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Chapter 2. Methods 
 
Field Investigation 

 Examination of surficial geology within the study area concentrated on creeks 

and excavations because they provided extended sections where near-surface features 

could be viewed and sampled.  Little Bayou Creek and Bayou Creek had the most 

exposures (Figure 1.1).  These generally north-south oriented creeks cross the West 

Kentucky Wildlife Management Area (WKWMA), the PGDP site, and private properties.  

Descriptions of exposures in the Tennessee Valley Authority’s (TVA) Shawnee Fossil 

Plant borrow pits and drainage ditches also provided useful information.  Investigations 

of Newton Creek, Nasty Creek, and Metropolis Lake provided geologic information. 

Gravel pits shown on the Joppa and Heath 7.5-minute geologic quadrangle maps proved 

inaccessible during site investigations because they had been flooded or revegetated.  

Locations strategic to plant security or with institutional controls in place for possible 

health hazards remained un-surveyed. 

For all exposures, strata descriptions were taken using standard methods.  Clast 

orientations were measured where a gravel or cobble fabric was observable in outcrop.  

Photographs were taken for database archival and to aid in comparison of exposures.  

Sediments were sampled for dating at selected locations where the stratigraphic units 

were thought to be undisturbed and well represented.  A hand-held Global Positioning 

System (GPS), with approximately ± 15 feet horizontal resolution, was utilized with 

1:24,000-scale topographic maps to reference all locations spatially.  Elevations were 

measured for selected bedding contacts using a Total Station electronic distance 

measuring device and a stadia rod equipped with a prism.  Elevations of exposures used 

known top-of-casing elevations from the closest monitoring wells as a reference for all 

elevation calculations.  A magnetic compass and inclinometer set at a declination of 3.5o 

to the northwest were used to determine the strike of gravel and cobble clasts in outcrop.  

Soil sample collection utilized a sliding hammer adapted to a double-wall sample barrel.  

Samples collected with this system fed through the steel outer barrel into inner aluminum 

sleeves 2 inches in diameter and 6 inches in length.  All aluminum sleeves were cut to 

length, ground, decontaminated, and stored in sealable plastic bags prior to use. 
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Age Dating 

 Because of the lateral heterogeneity of stratigraphic units and the possibility of 

multiple unconformities in these units, it was determined that absolute age dating should 

be attempted.  The aim of this task was to assist in the interpretation of surficial geology 

by using age, along with depositional context, for comparison with mapped exposures in 

the area.  Radiometric dating using 14C is a common method for dating Quaternary 

deposits; however, the units of interest preserved very little organic material.  Sampling 

was considered along Little Bayou Creek and Bayou Creek, but during the WLA (2005) 

site investigation, 87 (30-foot) soil cores were found to be too deficient in organic 

material to facilitate 14C sampling.  Additionally, vegetation proximal to all exposures 

made contamination from modern rooting likely.  Another complication was that 

manganese (Mn) concretions in the Mounds Gravel and Metropolis Formation appeared 

indistinguishable from charcoal under field conditions.      

Optically Stimulated Luminescence (OSL)  was chosen as an alternative method 

for dating the carbon-deficient sediment (Foreman, 2005; Owen, 2005).  The OSL 

technique measures the energy of photons released from sediment, in this case, quartz 

grains, to calculate a burial age (Aitken, 1998; Foreman, 2005).  This is accomplished by 

stimulating the release of absorbed ionized elements like uranium (U) and thorium (Th) 

using light energy (Aitken, 1998).  As the samples absorb light energy, ionized radiation 

is released as a luminescence emission (Aitken, 1998).  This occurs naturally when 

sediments are exposed to sunlight.  When these sediments are buried, they begin to 

retain ionized radiation from cosmic rays and other sources because there is no longer 

an energy source (sun or heat) to promote ionization (Aitken, 1998).   

 Using OSL for geochronology is accomplished by measuring the intensity of the 

luminescence emission and calibrating this to a dosage rate needed to release all 

ionized elements (Aitken, 1998).  This dose rate is then divided by the estimated 

radioactivity that the sample received after burial to yield a luminescence age (Aitken, 

1998).  The following equation by Aitken (1998) illustrate these relationships:  

Age = Paleodose /  Dose-rate 

 Sample preparation occurred at the University of Cincinnati (UC) under the 

guidance of Dr. Lewis Owen.  Samples were processed in a light-controlled laboratory 

using sodium-vapor lamps equipped with filters to create a yellow-orange light that would 

not liberate ionized radiation.  Approximately 1 inch of sediment along each end of each 

sample tube was extruded to lower the possible light contamination incurred during 
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sample collection.  These ends were set aside to be processed for later neutron 

activation analysis, which is not a light-sensitive process.  Samples were then extruded 

into glass beakers and weighed.  Next, samples were placed in a drying oven set at 

50oC and allowed to dry slowly for several days.  Once samples were dry, they were re-

weighed to calculate in-situ moisture content (Table 2.0).   

 Samples were sieved using a magnetic shaker and clean brass sieves with mesh 

sizes of 1000 μm, 500 μm, 250 μm, 180 μm, 125 μm, and 90 μm, plus the pan to isolate 

grain-size fractions for analysis.  Sieving took approximately 1 hour for each sample.   

Sieves were cleaned after each run using a fine needle and soft bristle brush to remove 

grains lodged in the brass mesh.  This process was done at a light table outside of the 

lab to insure all lodged grains were removed, and every attempt was made not to 

damage the mesh of the sieves during cleaning.  Sieves were then rinsed to remove all 

dust particles, flushed with compressed air and placed in an oven to dry for reuse.  One 

sample required wet-sieving because of its high fines content.  This was accomplished, 

after the initial dry sieving attempt, using tap water and a 20-gallon container.  The sieve 

stack was placed over the container (minus the pan) and each sieve was flushed with 

water and gently rubbed by hand to break up clods.  Once the size fraction of interest 

remained, particles on that sieve were flushed with water into a glass beaker and the 

process was repeated for the next sieve.  All materials less than 90 μm were allowed to 

flow into the 20-gallon container and discarded.  Grain size analysis from samples can 

be viewed in Table 2.1. 
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 Post-sieving removal of organic and carbonate material was accomplished by a 

series of acid treatments.  The samples were first soaked in 30% hydrogen peroxide 

(H2O2) for approximately 96 hours to dissolve any organic material.  Samples were then 

rinsed with de-ionized water and placed in a 10% hydrochloric acid (HCl)  solution for 24 

hours to remove carbonate material.  Samples were rinsed again and given a 10% 

hydrofluoric acid (HF) treatment for 1 hour to remove feldspars and other minerals not 

removed during the previous treatments.  After the HF treatment, samples were rinsed 

and allowed to sit in a 10% HCl solution for 1 hour to remove any fluorite (CaF2) that 

may have precipitated during the HF treatment.  Chemical treatments were finished with 

a triple rinse of all samples with deionized water followed by a triple rinse with acetone to 

accelerate sample drying.  Samples were then placed in a 50oC oven and allowed to dry. 

 Isolation of minerals was accomplished by density separation using lithium 

heteropolytungstate (trade name LST), a heavy liquid with a specific gravity of 2.85 

g/cm3.  Four solutions of LST were prepared by dilution with deionized water to densities 

of 2.75, 2.62, 2.58, and 2.53 g/cm3.  These density ranges allow for the separation of 

heavy minerals, quartz, feldspars and clays, respectively, for each sample (Figure 2.0).  

Mineral separation for samples began by immersing the sample in a 2.53 g/cm3 solution, 

spinning the sample in a centrifuge for 2 minutes and then decanting the liquid 

containing suspended grains into an appropriately labeled container.  This process was 

repeated until separation of all four density ranges was accomplished.  Density ranges of 

greater than 2.75 g/cm3 and less than 2.53 g/cm3 were discarded as heavy minerals and 

clays, and were not used for analysis.  The 2.53 g/cm3 - 2.58 g/cm3 and 2.58 - 2.62 

g/cm3 density ranges corresponded to potassium feldspar and sodium feldspar, 

respectively, and were triple rinsed with deionized water to remove all traces of the LST 

solution, then triple rinsed with acetone and allowed to dry prior to storage.   
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Figure 2.0:  Densities of heavy liquids used for mineral separation of OSL 

 samples (Aitken, 1998). 
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The quartz fraction in the density solution of 2.62 - 2.75 g/cm3 was triple rinsed with 

deionized water and subjected to a series of acid treatments to remove any plagioclase 

minerals in the sample as well as any alpha contamination along the skin of the quartz 

grains (Aitken, 1998).  A treatment of  49% HF was performed for one hour, followed by 

a 2-hour 10% HCl treatment to remove any CaF2 precipitation from the previous action.  

After acid treatment, each isolated quartz sample was triple rinsed with deionized water 

followed by a triple rinse with acetone and allowed to dry prior to storage. 

 Sub-samples removed for neutron activation were placed in a 100oC oven and 

allowed to dry.  These samples were then divided and 25% (~25 grams) of each sample 

was ground to a powder using a mortar and pestle.  Approximately 5 grams of this 

powder were placed in a resealable plastic bag and set aside to be sent to the USGS 

luminescence lab for neutron activation analysis.  The remaining ground sample was 

placed in a resealable plastic bag as a backup. Leftover, un-ground samples were also 

placed in resealable plastic bags for archival.  After each sample was ground, the mortar 

and pestle were washed with a mild detergent, rinsed with tap water, and wiped dry with 

a paper towel.  To ensure drying, a small amount of acetone was wiped onto the mortar 

and pestle and was allowed to dry before preparation of the next sample began.     

 Analysis of the prepared samples was performed by Dr. Lewis Owen at UC using 

a Risø OSL-TL system.  The single aliquot regenerative method was used to analyze all 

samples.  Twenty (or greater) aliquots from each sample were analyzed by this method.  

Neutron activation analysis results are pending from the USGS luminescence lab in 

Denver, CO.  Calculations will be made once neutron activation data are obtained.     

 

Acquisition and Application of Published Data 

Boring records for the PGDP were cited from published documents and logs 

provided by the Kentucky Division of Waste Management in hard-copy format.   

TVA borehole data were provided in digital and hardcopy formats.  USGS borehole data 

for the Joppa geologic quadrangle (GQ) map were acquired from the Kentucky 

Geological Survey in archived microfiche format.  This data were scanned into a digital 

image format for preservation prior to manual entry into the digital database.  USGS 

boring data for the Heath GQ were provided by Science Applications International 

Corporation (SAIC) in hard-copy format.   
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Spatial Reference 

 All borehole data that were input into the database were spatially referenced in 

two coordinate systems: the PGDP’s plant coordinate system and Universal Transverse 

Mercador (UTM), a projected coordinate system.  A dual-coordinate system was 

selected to simplify future data use.  For the PGDP borings, surveyed plant coordinates 

were referenced from the original borehole log or extracted from the report in which they 

were presented.  Non-PGDP borings were generally presented in a projected coordinate 

system and were transferred into UTM coordinates.  Transformation of all borehole data 

into a dual coordinate system was accomplished by use of the Transform Oak Ridge 

Coordinates (TORC) program version 2.0 provided by KRCEE.   

         

Lithologic Data 

 All lithologic data entered into the database originated from published borehole 

logs.  When possible, the original driller’s/geologist’s log was used for lithologic 

description; if unavailable, the next-published log for the boring was selected.  The 

RockWorks2004 program was used to store and manage all borehole data.  All pertinent 

information was copied directly from the boring log to create a digital copy.  For 

consistency and simplification, the grain size of a unit is located at the front of the 

description column in uppercase letters, followed by a colon and the rest of the formal 

description (color, sorting, grain size percentages, etc.), which is presented in lower case 

format.  Where non-continuous sampling was noted in logs, the description for the last 

lithology described was carried through until a change in lithology was noted usually 

because of sampling or a change in drilling conditions.  This was easily resolved in many 

instances where a graphical log was presented with written descriptions.  When only 

written descriptions were present, contacts were determined using lithologic descriptions 

for proximal borings.  Depths for all lithologies were entered in feet and converted 

between metric and English units as needed. 

A modified Unified Soil Classification System (USCS) was implemented to create 

an identifier for individual lithologic units.  This identifier is a summation of formal 

lithologic descriptions found at set sample depths from borehole logs.  Identifiers may be 

used in later modeling tasks for geologic interpretation or the log can be reviewed in its 

entirety for detailed geologic characterization.  The USCS was chosen because of the 

geotechnical nature of most boreholes and because it was already adopted as the 

primary classification system on many geologic logs.  This system also addressed the 

 19  



 

non-lithified lithologies of the site as well as or better than other systems considered.  

Table 2.2 depicts the USCS classification system.  Additional labels for classification 

were created for site-specific geologic characteristics.  USCS and site-specific identifiers 

utilized are presented in Table 2.3. USCS lithologic identification is based primarily on 

grain size.  Beyond grain size analysis, USCS classification uses the following 

descriptors: “well-graded”, “poorly-graded”, “low plasticity”, and “high plasticity”.  Well-

graded is equivalent to the geologic term poorly-sorted and poorly-graded is equivalent 

to well-sorted.  This graded descriptor refers to the amount of variation seen on a grain 

size distribution plot for coarse-grained soils.  Plasticity is related to the behavior of fine-

grained soil at different moisture contents and is identified by conducting a liquid-limit 

test on the soil, commonly determined by an ASTM D-4318 test.  However, for most of  

the geotechnical borings used in this study, the liquid limit was estimated in the field.  A 

liquid limit exceeding 50 indicates a high plasticity soil.  High plasticity soils are generally 

clays and are often referred to as fat or swelling clays.  Low plasticity soils, those with a 

liquid limit below 50, include both silts and clays.  These soils are often described as 

lean.   

In instances of incomplete or inconsistent lithologic description, the following 

assumptions were made.  If clay plasticity was not designated as “fat” or “lean”, lean was 

assumed due to fewer fat clays noted in the boring database.  Where lithologic 

description for a silt lithology was not designated “fat” or “lean”, lean was assumed as silt 

rarely exhibits plastic properties.  If sand or gravels were identified with no sorting 

indicated, well-graded (poorly-sorted) was assumed because of the heterogeneous 

nature of sediments previously noted at the site.  All assumptions were also evaluated 

with respect to the lithology described in adjacent borings.      

 A sample population of 58 borings was selected from the 400 entered for site- 

wide cross-sections.  The original logs of the 58 selected borings can be viewed in 

Appendix A.  A sample population was created to simplify geologic cross-sections 

because of massive data overlap.  The boreholes chosen were based on spatial 

distribution, detail of lithologic log, and total well depth.  To verify that the selected 

sample population was in agreement with the total dataset, a block model of each 

dataset was created using RockWorks2004  software.  The model was generated using an 

inverse distance algorithm with random blending and interpretation of outliers to smooth 

data.  Slices were made through both models every 10 feet at equal elevation ranges to 

calculate lithologic percentages.  
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Table 2.2:  USCS classification system (Kalinski and Supranata, 2005).  

Notes:
% - #200? =  The precent of material passing the # 200 sieve
% - C.F. - #4 =  The precent of material passing the # 4 sieve
cu= D60 / D10    cc= D30 / (D60  * D10) ; where D10, D30, and D60 correspondto 10%, 30% and 60%
passing, respectively
LL= Liquid Limit:    ASTM D-4318
PL= Plastic Limit:  ASTM D-4318
PI = Plasticity Index = LL - PL



 

  

 
 

CL Lean clay SM-SP Silty sand

CH Fat clay SP-SM Poorly graded silty 
sand

CM Silty clay SW-SM Well-graded sand 
with silt

CL-ML Lean clay with silt SW-SC Well graded sand 
with gravel

CH-MH Fat clay with elastic 
silt SP-SC Poorly graded sand 

with clay

CL-SM Lean clay with silty 
sand SP-GM Poorly graded sand 

with silty gravel

CS Sandy clay SP-ML Poorly graded sand 
with silty clay

CG Gravelly clay SW-CL Poorly graded sand 
with clay

ML Silt SP-SG Poorly graded sand 
with gravel

MC Clayey silt GW Well-graded gravel

MS Sandy silt GP Poorly graded gravel

MH Elastic silt GS Sandy gravel

SW Well-graded sand GC Clayey gravel

SP Poorly graded sand GM Silty gravel

SC Clayey sand RZ Rubble zone

SM Silty sand LS Limestone

SG Gravelly sand FILL Secondary fill

SP-CM Poorly graded sand 
with silty clay DG Data gaps (no data)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.3: Lithologic identifiers used. 
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A Mann-Whitney rank sum test was performed using SigmaStat software 

to test for statistical differences between the models based on lithologic percentages.  

Comparison of six lithology types for comparable elevation ranges did not illustrate a 

statistical difference between the two populations.  Raw data and analysis are presented 

in Appendix B.   

 

Stratigraphic Data 

 Stratigraphic units were chosen based on borehole lithology and followed the 

PGDP hydro-stratigraphic unit (HU) nomenclature (Clausen et al., 1992; Jacobs, 1997).  

A columnar section of this nomenclature can be viewed in Figure 2.1, including the 

equivalent chrono-stratigraphic units described in the introduction.  HU nomenclature for 

database archival should prove more useful to future researchers than chrono-

stratigraphic nomenclature because HU nomenclature traces similar lithologic units 

according to physical properties.  Surficial loess comprises HU-1, which was described 

as undifferentiated because of a lack of detail in lithologic logs.  HU-2 is characterized by 

discontinuous sandy to pebbly lenses in a silty matrix.  HU-2 was divided into HU-2A and 

HU-2B, where possible, as individual upward-fining intervals with a pebbly base (Davis, 

2005).   HU-3 is a confining layer of clay and silt with variable amounts of sand.  Units 

HU-2 and HU-3, however, do not always appear in the sequence illustrated in Figure 2.1.  

In some logs the entire HU-2 or HU-3 unit is missing.  In other logs these units alternate 

multiple times before they contact the underlying HU.  HU-4 is a discontinuous, well-

sorted sand directly overlying the Mounds Gravel, where the sand is present.  HU-2 

through HU-4 are equivalent to the Metropolis Formation.  HU-5 defines the Mounds 

Gravel/RGA and is identified by coarse chert gravels in a silty sand matrix of similar 

color.  HU-6 is a semi-confining surface below the RGA, generally sandy clay to fine 

sand, and is equivalent to the upper member of the McNairy Formation.  Reworked 

deposits pose a unique problem to the hydro-stratigraphic nomenclature because these 

units can be found at the same elevation with similar lithology as in-place deposits; 

however, they are obviously not age-equivalent.   
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Figure 2.1:  Hydrostratigraphic units used for input into the geologic database 

 presented with the chrono-stratigraphic equivalent units 

 (modified from Jacobs, 1997). 
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Reworking is most likely proximal to drainage features and in the northernmost portion of 

the study area within the active Ohio River floodplain, and therefore should not affect a 

site-wide stratigraphic model.  Chrono-stratigraphic units (geologic units mapped on GQ 

maps) are used on all lines of cross-section, thickness and elevation maps. These units 

are used for all visualizations, as they are the common names referenced to the unit, 

which fit best into a local stratigraphic framework.   

 

Geologic Interpretations 

 All interpreted stratigraphic contacts presented in cross-sections were picked by 

hand from strip-log profiles created using RockWorks2004.  Stratigraphic boundaries were 

drawn manually on all cross-sections using Canvas 8, a 2-D vector drafting program, 

and scale was preserved on all lines of section.  Grid models for isopach maps and 

structural elevation maps were created from the total available well population using a 

kriging point algorithm in Surfer 7 software.  Color-fills, contour maps and base maps 

were all created using Surfer 7, and background images were added later to aid in 

spatial reference.         
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Chapter 3. Data 
Original data and data from previous studies are referenced in the following 

section.  Locations of surficial investigations are shown in Figure 3.0, a map of the site 

illustrating points where data were collected, including notes, measurements, photos, 

orientations, and sampling locations. Clast orientation data may be viewed in Figure 3.1 

and raw data are presented in Table 3.0.  OSL sample locations may be viewed in 

Figure 3.2 and field logs from sample collection are presented in Appendix C.   

 

Surficial Information 

 Exposures along Bayou Creek and Little Bayou Creek offer the best insight into 

the near-surface geology of the study area.  Previous studies indicate that near-surface 

sediments are dominantly Pleistocene in age (Table 3.1) (WLA, 2006).  Exposures along 

creeks are complicated by modern fluvial processes.  Erosion and deposition by modern 

processes include fine sediment veneers from back-flooding of the Ohio River, stream 

cut-and-fill structures from seasonally variable flow, and disturbances from rooting.  All 

surface inspection points from the study area are referenced in Appendix D. 

 

Bayou Creek 

 Bayou Creek flows parallel to Little Bayou Creek in the western portion of the 

study area until the streams converge approximately 1,100 feet from the Ohio River.  

Gravel deposits appear in a substantial portion of the creek exposures.  Data for Bayou 

Creek are arranged along geologically similar stream reaches, starting at the southern 

(upstream) end of the stream and proceeding downstream to the Ohio River.   

 

First Reach 

Surveyed deposits along the southernmost reach, Woodville Road to Acid Road,  

contain upward-fining, reddish-yellow, medium to fine chert gravels in a sandy matrix 

atop a massive light-gray clay, with a sharp contact between the two units at ID 130 

(Figure 3.3).  These sediments appear to be reworked materials from the Mounds Gravel 

upper terrace and Metropolis Formation (Nelson, 2006).   Gravel lenses average 

approximately 2 feet in thickness and appear throughout this reach.  

 26  



 

 27  

Figure 3.0:  Field investigation location points referenced by identifier to Appendix D.
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Figure 3.1:  Locations where long-axis strike measurements
                    were colected from gravel fabric.
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Figure 3.2:  OSL sample collection locations.
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Figure 3.2:  OSL sample collection locations.
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ID Northing 
(UTM) 

Easting 
(UTM) 

Strike 
(degrees)

ID Northing 
(UTM) 

Easting 
(UTM) 

Strike 
(degrees)

ID 113 4108987 338002 294 ID 99 4108970 338005 45 
ID 113 4108987 338002 320 ID 99 4108970 338005 48 
ID 113 4108987 338002 265 ID 106 4110058 337930 86 
ID 113 4108987 338002 286 ID 106 4110058 337930 94 
ID 113 4108987 338002 20 ID 106 4110058 337930 337 
ID 114 4108995 338002 311 ID 106 4110058 337930 75 
ID 114 4108995 338002 327 ID 87 4114874 340224 90 
ID 114 4108995 338002 291 ID 87 4114874 340224 130 
ID 92 4107985 338074 99 ID 72 4114768 340278 70 
ID 92 4107985 338074 128 ID 72 4114768 340278 115 
ID 92 4107985 338074 161 ID 73 4114645 340323 90 
ID 92 4107985 338074 166 ID 73 4114645 340323 100 
ID 92 4107985 338074 208 ID 73 4114645 340323 30 
ID 92 4107985 338074 98 ID 73 4114645 340323 50 
ID 92 4107985 338074 9 ID 73 4114645 340323 45 
ID 92 4107985 338074 97 ID 73 4114645 340323 10 
ID 99 4108970 338005 328 ID 73 4114645 340323 52 
ID 99 4108970 338005 295 ID 73 4114645 340323 310 
ID 99 4108970 338005 312 ID 74 4115047 339825 310 
ID 99 4108970 338005 42 ID 74 4115047 339825 40 
ID 99 4108970 338005 328 ID 74 4115047 339825 85 
ID 99 4108970 338005 296 ID 76 4115275 339619 90 

Table 3.0:  Raw clast orientation data collected along stream exposures. 
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Hard, light-gray clay is present below the gravels and forms a firm bottom in the creek 

bed (in locations not covered by eroded gravel deposits).  This clay is continuously 

present along the stream banks and is likely derived from the Metropolis Formation.  

Loess and modern soil cap the gravel deposits in this area.  One OSL sample was 

collected from a gravel lens at ID 183 and a grain-size distribution curve for this sample 

is presented in Appendix E.  Iron oxide precipitation appears along several sections of 

the creek, firmly cementing gravels in some locations and occurring as amorphous iron 

(III) hydroxide (Fe(OH)3) in others (Figure 3.4).   

 

Second Reach  

North of Acid Road until approximately 0.9 miles downstream of Rice Spring 

Road gravel is continuously exposed with mean clast size increasing up to 2.5 inches 

along the long axis. Gravels within bank exposures south of Rice Spring Road appear to 

be modern reworking of the Metropolis Formation while deposits to the north are in place 

(Nelson, 2006).  Gravel deposits along this portion of creek are as much as 300 feet in 

length and average approximately 3 feet in thickness. Gravels appear transitional with 

sandy silts in some locations upstream of Rice Spring Road.  Light-gray clay crops-out 

below the gravel deposits in creek banks (Figure 3.5) and is also continuous along this 

reach with a sharp, undulating contact separating the two units.  Clay deposits at various 

locations along this reach have been mapped as the Porters Creek Clay by Olive (1966).  

One soft-sediment deformation feature was noted in a gravel deposit between 

Acid Road and Rice Spring Road (Figure 3.6).  This feature is a thinly laminated silt that 

penetrates into the gravel sequence bounded above and below by silt.  Silts above and 

below the structure exhibit horizontal lamination.  The gravels penetrated show little 

imbrication and are dark bronze chert clasts with occasional  weathered chert and quartz 

pebbles.  The boundary separating the upper and lower gravel zones is similar to other 

transitional zones along this stretch.  A clastic dike mapped in the lower clay deposit by 

Olive (1966) (near ID 112) was not found, but it was confirmed to exist by Davis (2005).  

Collection of 2 OSL samples was attempted at locations ID 181 and ID 184; however, 

cementation of the gravel deposits allowed for the recovery of the ID 184 sample only.  A 

grain-size distribution curve generated during OSL sample preparation is presented in 

Appendix E.  Amorphous Fe(OH)3 was noted at ID 98 and intense Fe and Mn staining 

was noted at ID 103. Gravels exhibit a preferred median clast strike of 284o across five 

locations of this reach (Figure 3.1).   
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Figure 3.3:  Outcrop at ID 130 illustrating the sharp contact between      

pebble-gravel deposits and underlying clay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4:  Amorphous Fe(OH)3 precipitating out into Bayou Creek at ID 138. 
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Figure 3.5:  Sharp contact between clay and gravel deposits at ID 152.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.6:  Soft-sediment deformation feature noted downstream of Acid Road. 
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Third Reach 

Downstream of ID 159, bank exposures are overgrown and occasionally mud-

draped north of ID 174 due to agricultural land-use practices.  Gravels appear in the bed 

of the creek along with sand bars, as opposed to the gravel-dominated bed upstream.  

Additionally, only fine gravels sparsely crop out along banks.  Exposures along reach 

three are covered by modern fluvial deposits and represent reworked loess and fine-

grained material from the Metropolis Formation.  These materials form a surficial veneer 

along the creek banks.  Increasing sand was noted in exposures along with active 

stream features.  Excavation into the banks revealed a buff to tan silty sand overlying 

dark bluish-gray clay (Figure 3.7).  These sediments are likely part of the Metropolis 

Formation.  One OSL sample was collected from the underlying clay unit at ID 182 and 

sieve analysis is presented in Appendix E.  Downstream of ID 175 the stream became 

nearly impassable because of beaver dams and deadfall.  Exposures along this section 

of stream during the study period were overgrown, flooded and/or inaccessible until the 

low-water bridge just downstream of ID 63.   

  

Fourth Reach 

Downstream from the low-water bridge to ID 6, the creek takes an easterly 

course.  Stream morphology also begins to change as the stream widens, and gravels 

once again are present in the stream bed.  Diffuse seeps along banks emanate from 

gravels appearing low in the banks and often precipitate amorphous Fe(OH)3.  Banks 

are composed of an upward-fining sequence of gravel to sand to mud (ID 5).  Bank 

sediments are poorly graded and friable with a bleached buff outer surface that is dark 

brown upon excavation (ID 6).  The Metropolis Formation is the source of material in the 

creek bed and bank exposures, but most exposures appear reworked by modern 

processes. 

  

Fifth Reach 

ID 17 (Figure 3.8) marks the location where gravel to cobble sequences appear 

in outcrop.  These continue, where not eroded, downstream to ID 74.  These exposures 

exhibit a sharp, inclined upper contact that undulates on the order of 1 to 2 feet.  Gravels 

show faint imbrication and signs of internal scour.  Gravels in bank exposures are 

derived from the Mounds Gravel and may be in-place deposits or have undergone slight 

reworking by the current fluvial system.    
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Figure 3.7:  Outcrop at ID 168 illustrating facies change to silty sand overlying gray clay. 

 
Figure 3.8:  Return to well cemented coarse gravel-cobble sequences at ID 17. 
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These gravels are sharply overlain by a light-tan loess and modern soil cap until the 

gravels are completely draped downstream of ID 74 by fine sediment deposited by the 

backflooding of the Ohio River.  Elevation of the gravel deposit at ID 17 was measured 

at 303 to 306 feet above mean sea level (amsl) (Figure 3.0).  One OSL sample was 

collected at ID 178 and grain size distribution from sieve analysis is presented in 

Appendix #.  Clast measurements collected at ID 74 and ID 76 (Figure 3.1, Table 3.1) 

yield a median long-axis clast strike of 86o.  

 

Little Bayou Creek 

 Little Bayou Creek flows along the eastern portion of the WKWMA and has 

undergone channelization along its northern reaches, resulting in good geologic 

exposures.  Institutional controls for health hazards are in place along the southernmost 

portion of the creek, so it was not surveyed.  However, a previous study by SAIC (2004) 

was referenced for descriptive purposes along this section of the creek. Surficial data 

are presented along geologically similar segments of the creek.  

  

Sixth Reach 

SAIC (2004) indicates no exposures south of the lowest portion of the terrace 

slope defined by Jacobs (1997) along Little Bayou Creek.  Upstream of McCaw Road, 

clay crops out in the bank as much as 2 feet above stream level.  The stream dissects 

into this unit (SAIC, 2004).  A layer of thin massive silt (1 foot thick, immediately 

upstream of McCaw Road) and modern soil cap the clay (SAIC, 2004).  The exposure 

height increases between McCaw Road and Ogden Landing Road.  Massive silt (6 feet 

thick) appears in a 9-foot-high exposure, over the clay, with vertical to sub-vertical 

fractures along a 30-foot-long exposure midway along this reach.  Immediately 

downstream a 50-foot-long exposure contains a 6.5-foot-thick layer of medium-grained, 

silty sand grading to massive silt, which is separated from the underlying weathered clay 

by a gravel-rich contact (SAIC, 2004).  This sequence continues with a total height of 6 

to 8 feet for approximately 200 feet along the stream (SAIC, 2004).  The silt along this 

reach represents undifferentiated loess. 
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Seventh Reach 

North of Ogden Landing Road to ID 34, pebble and sand lenses appear 

frequently in the massive silt that caps the clay unit subcropping below the stream 

(Figure 3.9).  These lenses appear partially iron cemented and are as much as 19 feet in 

length with an average thickness of 1 foot.  At ID 34 and progressing downstream, clasts 

within lens-shaped deposits increase to gravel and cobble size and appear in banks until 

ID 36.  Sediments along reach seven are reworked material from the Metropolis 

Formation and loess deposits.  Exposure was limited from this point downstream to 

Anderson Road, but cross-bedded coarse gravel bars (modern) were noted in the 

stream.   

  

Eighth Reach 

The largest natural outcrop of the study area is located approximately 0.3 mile 

downstream of Anderson Road at ID 43 (Figure 3.10).  This large exposure is a model for 

all exposures starting at ID 42, where fine-grained silty sand is noted in the banks and 

continues until channelization has occurred 0.7 mile downstream.  This exposure 

represents the upper portion of the Metropolis Formation capped by undifferentiated 

loess.  Outcrops along this reach consist of 5- to 15-foot vertical banks of tan to white 

silty sand with stringers of iron cement over a creek bed of hard, mottled, light gray clay, 

which is covered occasionally with an eroded sandy veneer.  Weakly cemented sand 

layers eroded from exposures occur occasionally along this reach as “flagstone” along 

the creek banks.   One OSL sample was collected at ID 43 and a grain-size distribution 

curve from sieve analysis is provided in Appendix E.   

Where channelization begins, the creek bed takes a new form.  Increased sand 

in the bed is noted along this reach with seeps and boils forming along the banks and in 

the bed.  Water temperatures from seeps and boils differ significantly from stream 

temperatures in summer and winter, which indicates these features to be areas of 

groundwater discharge (LaSage, 2004).  Bank lithology, however, remains a massive silt 

to silty sand until ID 83.   

 

 38  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9:  Pebble lens downstream of Ogden Landing Road. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10:  Large outcrop at ID 43. 
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Ninth Reach 

Interbedded dark gray clay, orange sand and tan silt are present upon excavation 

of the surface veneer at ID 83 (Figure 3.11).  The dark gray clay, however, only appears 

locally on the northeast bank, and dark gray to black clay is seen washing down the 

same bank in other locations.  This is a modern feature, influenced by sediment 

delivered from the nearby TVA ashponds. 

 Gravel deposits crop out along both creek banks approximately 90 feet 

downstream of ID 84 until ID 72.  Exposures along this portion of the ninth reach 

illustrate the Metropolis Formation / Mounds Gravel contact.  This contact was confirmed 

by Nelson (2006) and consist of an estimated 2-foot gradational interval where 

preserved.  The Metropolis Formation and/or Sangamon Geosol (Loveland loess unit) 

cap the Mounds Gravel along this reach.  The Mounds Gravel deposits are iron stained, 

weakly to well cemented, and reddish-brown in color.  Clasts have a bronze patina and 

are gravel- to cobble-sized.   The sandy matrix of the unit retains the reddish-brown 

color. Elevation of the gravels at the start of the exposure is 318 feet amsl and undulates 

+/- 1 foot along the exposure at measured locations.  In high banks (where preserved) 

the Metropolis Formation consists of orange and gray silty sand and weathered-brown 

chert gravel, with a gradational contact between the two units.  In other locations, silty 

sand or silt loess beneath modern soil overlies the gravels, and a gradational contact 

separates the upper sediments from the gravel deposits.  At the start of the gravel 

exposure a medium gray clayey silt is present below the gravels, but the clay is not 

visible further downstream as the gravels sub-crop below stream level (Figure 3.12).  

Two OSL samples were collected at ID 179; one in the gravel deposit and one in the 

underlying clayey silt.  Sieve analyses of these samples can be viewed in Appendix E.   

 40  



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11:  Interbedded silts and clays at ID 83. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12:  Start of gravel deposit overlying gray clay. 
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  Gravel deposits continue to be exposed from ID 72 until slightly beyond ID 77, 

where they become masked by silt drapes and bank erosion.  The extent of exposures 

depends greatly upon the season and recent stage of the Ohio River.  Deposits along 

this reach differ slightly from those downstream as cementation is mostly or completely 

absent and the sandy matrix of the unit is a yellowish-tan instead of the reddish-brown 

color of the clast.  Sediments from ID 72 to ID 77 retain the bronze patina indicating 

Mounds Gravel, but have been reworked by modern fluvial processes.  Massive silt 

overlies the gravel deposits and good exposures are available because of the 

channelization/rerouting of the creek.  The overlying silt, while not indicating bedforms, 

does contain various leach zones and a sandy contact where it merges with the 

underlying gravels (Figure 3.13).  This silt represents in-place undifferentiated loess.  

Elevation of the gravel deposits ranges from 310 to 313 feet along this reach and 

modern sediment drapes had to be excavated prior to measurement in some areas.  

Two OSL samples were collected at ID 177, one in the upper silt unit and one in the 

gravel unit.  Sieve analyses of the samples is presented in Appendix E.  A preferred 

fabric in clast orientation for the gravel deposits was also noted at ID 69, ID 72, and ID 

73, and orientation measurements from these locations indicate a mean clast strike of 

76o (Figure 3.1, Table 3.0).  Downstream of ID 77 to the Ohio River exposures are 

heavily masked by modern deposition.   

 

OSL Data 

 OSL results are still pending.  Neutron activation data are required for age 

calculations and these data have not been received from the USGS luminescence 

laboratory.  Using a range of dose rate values recommended by Owen (2006), OSL data 

appear to be erroneous.  Data at ID 177 do not follow the law of superposition.  All 

aliquots sampled at ID 177 appear much younger in the lower gravel unit than in the 

upper silt unit.  Other samples from the Metropolis Formation exhibit ages much younger 

than the loess ages presented in Table 3.1.  These results are inconsistent with the 

known stratigraphy of the site.    
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Figure 3.13:  Outcrop at ID 69.  
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Subsurface Data 

 Borings conducted from previous site investigations were the primary source of 

subsurface data on underlying geology.  Spatial distribution of selected borings (Figure 

3.14) resulted in adequate resolution for site-wide geologic assessment.  Surface 

elevation of selected borings ranged from 415 feet to 322.5 feet amsl and the deepest 

borings penetrated into limestone bedrock 350 feet below the surface.  Boring logs from 

continuous sediment cores yielded the most useful information, while discrete interval 

sampling generally provided information on lithologic boundaries.  Data quality ranged 

from excellent to poor and every attempt was made to confirm the accuracy of data 

before they were used for interpretation. In most wells deeper than 80 feet, three to four 

distinctive boundaries were discernable by changes in color, grain size and mineralogy.            
Stratigraphic interpretations of data have been assembled from surficial and 

subsurface data.  Subsurface data are presented in isopach maps, structural elevation 

maps, and cross-section profiles.  Surficial data were used to aid in identification of 

stratigraphic units, understand the spatial distribution of lithologies, and interpret 

depositional environments.  

    

Structural Elevation and Thickness   

 Limestone bedrock dips to the south (Figure 3.15). Six additional boreholes from 

outside the study area were added to increase the resolution of Figure 3.15 (Figure 3.16). 

A bedrock low underlying the study forms a lobe striking to the north.  This low drops 63 

feet across the five borings that penetrate bedrock directly underlying the site.  A small 

structural high appears immediately south of the terrace slope and bedrock elevation 

varies 28 feet on opposite sides of the terrace slope.  The median elevation of bedrock 

in Figure 3.15 is 42 feet amsl.  The overlying Tuscaloosa Formation had insufficient data 

points to create a structural elevation map.   
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Figure 3.14:  Spatial distribution across the study area.
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Figure 3.15:  Structure coutour map of Mississippian limestone bedrock.

Notes:  Contour interval 20 feet; elevations are amsl.
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Legend:
Well outside the study area
Well inside the study area
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Figure 3.16:  Map indicating boreholes used outside of the study area 

(modified from Davis, 1996). 
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The McNairy Formation overlies bedrock through most of the study area and 

exhibits a 122-foot elevation change across Figure 3.17.  Most of the elevation change is 

in the southern portion of the study area where elevation changes abruptly from 180 to 

270 feet amsl.  The elevation change for the McNairy Formation appears less prominent 

in the southwestern portion of the study area, but this may be related to reduced well 

control in that region.  North of the terrace slope an additional zone of irregularity is 

noted.  This zone strikes northeast, perpendicular to the Ohio River.  The Porters Creek 

Clay (Figure 3.18) is preserved south of the terrace slope (Jacobs, 1997) and dips to the 

east.  The Eocene sands sparsely occur in the study area and insufficient data were 

present to create a structural elevation map of the unit.   
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Figure 3.17:  Structure elevation map of the McNairy Formation upper surface.

Notes:  Contour interval 20 feet; elevations are amsl.
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Figure 3.18:  Structure elevation map of the Porters Creek Clay upper surface.

Notes:  Contour interval 20 feet; elevations are amsl.
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The Mounds Gravel shows a similar pattern to the McNairy Formation (Figure 

3.19), with rapid elevation change in the southern portion of the study area, southward to 

the terrace slope (Jacobs, 1997).  The highest elevation of the Mounds Gravel appears 

in the southwest of the study area at 412 feet amsl, and elevation decreases 147 feet to 

265 feet amsl in the northern portion of the study area. The Mounds Gravel trend also is 

similar to the McNairy Formation trend: elevations are higher along the western border 

of the study area, and a similar zone of irregularity is displaced in the northeastern 

quadrant.   

The Mounds Gravel was the deepest unit with sufficient data points to create an 

isopach map (Figure 3.20).  Thickening of the unit occurs in two distinct locations, along 

a northwest trend, parallel to the terrace slope (Jacobs, 1997) and along the same 

anomalous northeast strike noted from the Mounds Gravel and McNairy Formation 

structure contour maps.  The thickness of the Mounds Gravel varies from 80 to 2 feet 

with a mean thickness of 29 feet.  

The Metropolis Formation blankets the Mounds Gravel with a gentle dip toward 

the Ohio River (Figure 3.21).  The average elevation for the Metropolis Formation is 353 

feet amsl in the study area.  The elevation drops 168 feet from the terrace slope to the 

Ohio River floodplain.  Figure 3.22, an isopach map of the Metropolis Formation, 

displays a median thickness of 27 feet, with thinning occurring along dip, nearing the 

Ohio River.   

Undifferentiated surficial loess caps all formations.  The loess has a median 

thickness of 15.5 feet (Figure 3.23), which increases in structural lows of the Metropolis 

Formation structure-contour map (Figure 3.21).  
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Figure 3.19:  Structure elevation map of the Mounds Gravel upper surface.

Notes:  Contour interval 10 feet; elevations are amsl
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Figure 3.20:  Isopach map of the Mounds Gravel.

Notes:  Contour interval 10 feet; contours represent thickness.
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Figure 3.21:  Structure elevation map of the Metropolis Formation upper surface.

Notes:  Contour interval 20 feet; elevations are amsl.
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Figure 3.22:  Isopach map of the Metropolis Formation.

Notes:  Contour interval 10 feet; contours represent thickness.
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Figure 3.23:  Isopach map of undifferentiated loess deposits.

Notes:  Contour interval 10 feet; contours represent thickness.
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Geologic Sections 

 The location of geologic cross-sections is presented in Figure 3.24 along with the 

borings used in each section.  All cross-sections are presented at 50 times vertical 

exaggeration.  Lithologic and stratigraphic identifications for all cross-sections are 

presented on section A-A’ and are consistent through all lines of section.   

 

South - North Sections 

 The westernmost profile, A-A’, is presented in Figure 3.25, and clearly 

illustrates the truncation of Porters Creek Clay by the Mounds Gravel.  The Mounds 

Gravel directly overlies the McNairy Formation north of the terrace face between 

boreholes 20 and 13 on A-A’.  Profile A-A’ additionally illustrates thickening of the 

Metropolis Formation and Mounds Gravel to the north of the terrace face. 

Crossing the center of the site, profile B-B’ (Figure 3.26) illustrates the same 

truncation of the Porters Creek Clay, but an elevated and irregular McNairy Formation 

appears north of the terrace face between S-18 and MW-158.  This juxtaposition 

indicates that the Mounds Gravel has dissected into the McNairy Formation in the 

northern portion of the study area.  The Metropolis Formation caps the Mounds Gravel 

and has a relatively uniform thickness compared to the Mounds Gravel.                 

Across the eastern portion of the study area, profile C-C’ (Figure 3.27) illustrates 

the full stratigraphic record of the area.  Eocene sands are present at the southern flank 

of the section between AH-203 and MW-346, and the Porters Creek Clay extends north 

until it is truncated at boring MW-122.  Between boreholes MW-122 and MW-345 there 

is a significant elevation change in the top of the McNairy Formation.  The formation 

continues at this new elevation through the rest of the section.  The Mounds Gravel 

thickens between borings MW-346 and MW-345, filling in the terrace slope.  However, 

the unit appears to vary in thickness as the Metropolis Formation dissects into the unit at 

borings MW-122 and S-15. 
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West - East Sections   

 Sub-parallel to the Ohio River, profile D-D’ (Figure 3.28) exhibits a subtle change 

in the McNairy Formation elevation at the western most extent of the sections; however, 

the elevation is consistent through the rest of the section east of boring 14.  The Mounds 

Gravel thickness undulates throughout the section, thinning at the eastern most limit. A 

thick Metropolis Formation is preserved east of boring 13.  

Profile E-E’ (Figure 3.29) cuts across the southern portion of the study area.  The 

Porters Creek Clay is preserved through the length of this section.  The terrace face 

occurs east of boring AH-210, where a deep sequence of Mounds Gravel deeply incises 

into the Porters Creek Clay.  The Mounds Gravel and Metropolis Formation thicken to 

the east of the section.   
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Figure 3.29: Cross-section E-E’. 
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Chapter 4. Discussion 
 
Deposition and Geologic Units 

Data and results of this investigation support previous interpretations of the general 

depositional environments discussed in the introduction.  There is, however, significant 

influence of paleotopography and possibly tectonic structures on these environments.  In the 

study area, the structural elevation of the McNairy Formation exhibits areas of disruption 

striking to the northeast, in the center of Figure 3.17.  These disruptions are along the trend 

of faulting across the Ohio River in the Joppa (IL) and Metropolis (IL) GQ maps.  Further 

evidence of disruption is present along profile B-B’ (Figure 3.26), where the upper surface of 

the McNairy varies substantially in elevation between boreholes S-18 and 005-013.  A 

similar phenomenon is present to the east along profile C-C’ (Figure 3.27) between MW-346 

and MW-122.  This elevation change may have led to increased erosion of the Porters 

Creek Clay in the southeastern portion of the study area.   

Scour by the ancestral Tennessee River has been interpreted as having formed the 

terrace slope (Jacobs, 1997).  This is well represented by the steep slope of the Porters 

Creek Clay in Figure 1.2.  The paleocurrent direction of the ancestral Tennessee River was 

probably similar to the orientation of the modern Ohio River.  Assuming the long axis of 

gravel is oriented perpendicular to flow, to roll along in bedload, clast orientations can be 

used as crude paleocurrent indicators.  Orientations of long-axis clast strikes measured from 

exposures along Little Bayou and Bayou Creek averaged 284o in the south and 76o in the 

north (Figure 3.1), indicating an east – west component to flow.   

The ancestral Tennessee River occupied a much broader valley than the current 

Ohio River floodplain. The southern extent of the incised river during the Pleistocene 

stretched from the terrace slope (Figure 1.2) in Kentucky to the High Mounds contour on the 

Joppa (IL) geologic map (Nelson and Masters, 2006).  These two features form a steep-

sided valley created by down-cutting of the ancestral Tennessee River.  

The Porters Creek Clay and Eocene sands are terminated by the terrace slope in the 

southern region of the study area.  Truncation of the Porters Creek Clay is best illustrated on 

profile A-A’ (Figure 3.25), but also appears on profile B-B’ (Figure 3.26) where it is slightly 

complicated by the elevated McNairy Formation.  The use of the term “Terrace Slope” may 

be misleading when referring to this truncated surface.  While the Mounds Gravel has been 

deposited by the ancestral Tennessee River in terraces across the site, the feature causing 

truncation of the Paleocene and Eocene units is better described as an erosional scarp. This 
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scarp is identified from the steep surface left on the structural elevation map of the Mounds 

Gravel base (Figure 4.2) and along profile A-A’ (Figure 3.25).        

Comparison of structural elevation maps and isopach maps (Figures 3.19 to 3.23) 

indicates that deposition of post-Eocene units mantled the pre-Eocene topography.  

Structural lows in the underlying McNairy Formation (Figure 3.17) tend to be overlain by 

increased thicknesses in the Mounds Gravel (Figure 3.20).  In some cases, increased 

thicknesses may be due to infilling of paleotopographic lows, while in others increased 

thickness may have resulted from scouring into underlying units.  Scouring of the Mounds 

Gravel into the Porters Creek Clay is evident on profile E-E’ (Figure 3.29) at borehole AH-

210.  Scouring of the Metropolis Formation is present along profile C-C’ (Figure 3.27) at 

boreholes MW-122 and S-15.  Evidence of such cut and fill is also present in Metropolis 

Formation exposures along Bayou Creek (Figure 3.5).   

Diversion of the ancestral Tennessee River into Smith Gap, IL, during the mid-

Pleistocene (Nelson et al., 1999) led to a significant change in regional drainage.  As 

sluggish, underfit streams (with deposits preserved in the Metropolis Formation) overtook 

the previous, broad braided-stream valley filled by the Mounds Gravel, upward-fining, gravel 

to silt sequences developed along meandering tracks within the paleovalley (Nelson et al, 

1999).  Slow aggradation of sediments in this environment resulted in weak soils 

development locally during inter-fluvial periods of Metropolis Formation deposition.   

In the study area, numerous upward-fining sequences are noted in the Metropolis 

Formation with great spatial variability across the site.  On profiles C-C’ and E-E’ (Figures 

3.27 and 3.29), areas of thick, upward-fining, sharp-based Metropolis Formation lie above 

the thin Mounds Gravel.  These likely represent scours into the Mounds Gravel due to 

changes in the fluvial system and deposition of small channel fills. 

Evidence of cut and fill is presented in Figure 3.5 and weak soil development is 

noted in Figure 3.7, both from Metropolis Formation exposures along Bayou Creek.  No 

large paleochannels were noted in outcrop exposures in creeks. Lateral traceability of 

internal units in the Metropolis Formation (HU-2 – HU-4) is also difficult on a site-wide scale 

due to the nature of deposition.   
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Geologic Age Dating 

 Preliminary results of OSL analyses appear inconsistent with the stratigraphy of the 

site.  Data do not follow the law of superposition, nor fit into the stratigraphic context of the 

study area presented in Figure 1.2.  Recrystallization and the depletion of radionuclide 

concentrations can both cause a reduction in the luminescence signal.  Failure of the OSL 

method is likely due to bioturbation and illuviation of grains, resulting in the stratigraphic 

“leakage” of younger grains into the horizon sampled.  As infiltrating water and roots 

disrupted sediments, the radionuclide concentrations were likely reduced by the introduction 

of younger particles, resulting in age calculation errors.  Zones of cementation (iron oxide) 

and mineralization (manganese) noted in outcrops also likely affected the luminescence 

signal, causing recrystallization that resulted in younger age calculations.   Based on these 

preliminary results, it does not appear that the OSL method is effective for dating sediments 

in an environment that includes pronounced infiltration and bioturbation.   

 

Site Implications 

The RGA is the primary aquifer at the site, and is of concern because of 

contamination.  Consisting of the Mounds Gravel, the RGA is a semi-confined aquifer.  The 

Metropolis Formation contacts the upper surface of the RGA while the McNairy Formation 

forms the underlying confining unit in the study area.  Several depositional relationships 

have influenced the RGA.  In coarser sequences of the Metropolis Formation (HU-2A – HU-

2B), higher hydraulic conductivity is likely, which would allow groundwater and possibly 

pollutants to  preferentially flow into the RGA.  Incision of the Metropolis Formation into the 

Mounds Gravel, resulting in thinning of the RGA, also probably altered aquifer properties.  In 

these areas, hydraulic conductivity values of the RGA could be lower.            

Understanding the distribution of the Mounds Gravel will aid in understanding  

contaminant transport through the RGA. As such, it is useful to view the current contaminant 

plumes in relation to site geology and discern possible controls that might affect pollutant 

migration.  The units confining the Mounds Gravel consist of clay and silt, which have a 

drastic contrast in hydraulic conductivity compared to the Mounds Gravel (Domenico and 

Schwartz, 1998).  This contrast limits vertical groundwater and contaminant propagation 

(Clausen et al., 1992; Jacobs, 1997).  

 Groundwater flow in the study area is to the northeast (Figure 4.0).  The year 2000 

TCE plume boundary map indicates two distinct lobes of contamination, both traveling to the 

northeast, away from the terrace slope (Figure 4.1).  
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Figure 4.0:  Hydraulic heads in the RGA from 1997 data, contour interval 3 feet  
(modified from Fryar et al., 2000). 
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Figure 4.1:  TCE plume boundary from year 2000 data. 
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          The limit of vertical contaminant migration is the base of the Mounds Gravel (Figure  

4.2). When the year 2000 TCE plume boundary map is superimposed on a structural  

elevation map of the base of the Mounds Gravel, a structural high corresponds to plume 

bifurcation (Figure 4.3).  Also, when an isopach map of the Mounds Gravel (Figure 4.3) is 

overlain with the year 2000 TCE plume boundary map, there is a correlation between 

contaminant migration and Mounds Gravel thickness.  As the plume crosses Little Bayou 

Creek in the northeast quadrant of the study area, the Metropolis Formation is thin (Figure 

3.22) and the upper surface of the Mounds Gravel is mapped in outcrop downstream at ID 

84 (Figure 3.0) at 318 feet amsl.  Spring-water samples from this area indicate TCE 

concentrations greater than the maximum contaminant level set by the USEPA (Fryar et al., 

2000).  These contaminated discharge points indicate the connection between the RGA and 

surface water (Fryar et al., 2000).  The interconnection of the Mounds Gravel with surface 

exposures was not obvious from the Joppa (KY) GQ (Finch, 1967).   

70 



 

Figure 4.2:  Structure elevation map of the Mounds Gravel base surface.

Notes:  Contour interval 10 feet; elevations are amsl.
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 Faults mapped by the ISGS in the Joppa (IL) and Metropolis (IL) GQ maps also 

postdate geologic maps of the study area in Kentucky.  These faults are co-linear to the 

northeast – southwest oriented zones of irregularity noted on the McNairy Formation and 

Mounds Gravel structural elevation maps in this study (Figures 3.17 and 3.19).  The 

timing of such faulting is hard to pinpoint.  Nelson et al. (1999) indicate faulting in 

southern Illinois has been noted to displace the Metropolis Formation.  However, the 

structural elevation map (Figure 3.21) and all geologic profiles (Figures 3.25 – 3.29) do 

not illustrate displacement of the Metropolis Formation across the river in Kentucky.   

The soft-sediment deformation feature noted along Bayou Creek (Figure 3.6) is 

not interpreted to be a seismite.  This is because the widespread occurrence of similar 

features has not been noted in the same unit, one of the conditions that identifies 

seismites (Greb and Dever, 2002).  This deformation feature most likely formed during 

deposition as pore pressure in the fine sediment exceeded the confining pressure of the 

overlying gravels (Figure 3.6). Overpressurization in fluvial sediments caused by 

hydraulic-head differences (artesian-pressure differences), usually following flooding, 

can trigger fluidization and form sand dikes (Kolb, 1976; Li et al., 1996).  Liquefaction of 

the soil probably occurred at this point, allowing the underlying fine soil to became 

suspended in pore fluid and injected into the unconsolidated gravels above.   

Deformation features are also noted in the Porters Creek Clay.  Olive (1966) 

mapped one clastic dike in the Heath GQ map.  Amick (2005) indicated these features 

were commonly evident in borrow pits that had once operated in the area.  Similar clastic 

dikes form throughout the Jackson Purchase region in the Porters Creek Clay and have 

been interpreted to be seismically related (Hendricks, 2000).     

Faults propagating from the FAFC likely influence the erosional scarp left by the 

ancestral Tennessee River and Mounds Gravel deposition.  This is due to the local dip to 

the south of the erosional scarp (Figure 1.2), correlating with both the zone of irregularity 

previously noted on structural elevation maps and with northeast – southwest thickening 

of the Mounds Gravel (Figure 3.20), all along the same strike.   

Supporting this hypothesis is the undulating upper surface of the McNairy 

Formation noted on geologic profiles (Figures 3.26 - 3.27).  In the northeastern portion of 

the study area, faulting mapped on the Joppa (IL) geologic map (Nelson and Masters, 

2006) also correlates with contours of an erosional surface of late Cretaceous and 

Paleocene units mapped on the Joppa (KY) geologic map by Finch (1967) (Figure 4.4). 
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Figure 4.4:  Joppa (IL) (Nelson and Masters, 2006) and Joppa (KY) (Finch, 1967) GQ maps.  
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Langston and Street (1998) have proposed a structural control on contaminant transport 

at the site.  Based on a comparison of plume position, structure contour maps, and 

isopach maps in this study, it is likely that a combination of factors controls the RGA flow 

system.  These factors include thickness and channel trends within the Mounds Gravel, 

which sometimes correspond with structural lows of the McNairy Formation paleo-

topography.  Along with faulting and possibly fracturing, zones of thick gravels may offer 

preferential pathways for groundwater / contaminant transport.  

 

Conclusions 

 Near-surface sediments underlying the Paducah Gaseous Diffusion Plant and 

surrounding area are highly varied because of the fluvial depositional environment in 

which they formed.  This variability manifests itself mostly in the Metropolis Formation, 

where underfit streams filled the broader braided-stream valley in which the Mounds 

Gravel was deposited.  Separating the Mounds Gravel and Metropolis Formation from 

the previously defined Continental Deposits aids in making the distinction between the 

two different depositional environments and resulting deposits.  

 Zones of irregularity in the McNairy Formation and Mounds Gravel also 

complicate the near-surface geology.  These zones appear to be caused by faulting from 

the FAFC.  This faulting has affected the Mounds Gravel by limiting the deposition of the 

gravel from structural highs created in the McNairy Formation, by creating zones of 

preferential erosion in post-Miocene units, by direct uplift of stratigraphic units including 

the Mounds Gravel, or by a combination of all these factors.     

 Faulting at the site is not well understood and will require future study.  At this 

time, spatial resolution of data in the study area is not adequate to extend faults 

presented on adjacent geologic maps of southern Illinois.  High resolution seismic 

profiles along areas of irregularity noted in the structural elevation maps and geologic 

profiles may assist in defining faults and illustrating potential pathways for contaminant 

transport.      

Understanding the geology of the units impacted by contamination is the key first 

step in predicting future contaminant transport.  The lithologic and stratigraphic database 

provided to the PGDP for inclusion in a new data warehouse program should enable 

future researchers to better understand and model the hydraulic properties of the RGA.   
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Borehole Identification Page Number Borehole Identification Page Number
AH-114 77 MW-197 155
AH-203 78 MW-215 159
AH-208 79 MW-217 161
AH-210 80 MW-219 163
AH-211 81 MW-239 165
AH-212 83 MW-346 174
AH-328 84 S-14 180
DB01 85 S-15 184

MW-120 97 S-18 187
MW-121 104 S-19 192
MW-122 111 3 195
MW-140 118 11 196
MW-144 124 13 197
MW-158 129 14 198
MW-161 133 15 199
MW-163 136 18 200
MW-183 140 19 201
MW-185 144 20 202
MW-188 148 27 203
MW-193 151 29 204
MW-196 155 31 205

APPENDIX A 
Lithologic logs of boreholes used in geologic profiles. 

All boreholes appear as they did in their respective references 
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APPENDIX B 
Test for significant statistical difference between the selected borehole population used 

in geologic profiles and the total borehole dataset compiled for this study.  
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Notes:  x = boreholes selected for use in geologic profiles 
 all = total borehole dataset compiled for this study 
 
 
Tables above were used for statistical comparison of grain-size percentage along 10-
foot intervals.  Gaps in data, unknown data, and grain sizes not listed above were left out 
of analysis, therefore percentages may not equal 100%. 

 207



Mann-Whitney Rank Sum Test Tuesday, June 13, 2006, 4:37:58 PM 
 
Data source: Data 1 in Notebook 1 
 
Normality Test: Failed (P = 0.002) 
 
Group N  Missing  Median    25%      75%     
CLAY -x-section 21 0 0.0600 0.0400 0.105  
CLAY - all 21 0 0.0600 0.0200 0.1000  
 
T = 464.500  n(small)= 21  n(big)= 21  (P = 0.753) 
 
The difference in the median values between the two groups is not great enough to exclude the possibility 
that the difference is due to random sampling variability; there is not a statistically significant difference  (P 
= 0.753) 
 
Mann-Whitney Rank Sum Test Tuesday, June 13, 2006, 4:38:57 PM 
 
Data source: Data 1 in Notebook 1 
 
Normality Test: Passed (P > 0.050) 
 
Equal Variance Test: Passed (P = 0.587) 
 
Group N  Missing  Median    25%      75%     
CM to MC -x-section 21 0 0.150 0.0875 0.205  
CM to MC - all 21 0 0.170 0.145 0.210  
 
T = 427.000  n(small)= 21  n(big)= 21  (P = 0.546) 
 
The difference in the median values between the two groups is not great enough to exclude the possibility 
that the difference is due to random sampling variability; there is not a statistically significant difference  (P 
= 0.546) 
 
Mann-Whitney Rank Sum Test Tuesday, June 13, 2006, 4:40:00 PM 
 
Data source: Data 1 in Notebook 1 
 
Normality Test: Failed (P = 0.007) 
 
Group N  Missing  Median    25%      75%     
Silt -x-section 21 0 0.0900 0.0575 0.145  
Silt - all 21 0 0.0500 0.0400 0.130  
 
T = 522.500  n(small)= 21  n(big)= 21  (P = 0.076) 
 
The difference in the median values between the two groups is not great enough to exclude the possibility 
that the difference is due to random sampling variability; there is not a statistically significant difference  (P 
= 0.076) 
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Mann-Whitney Rank Sum Test Tuesday, June 13, 2006, 4:40:49 PM 
 
Data source: Data 1 in Notebook 1 
 
Normality Test: Passed (P > 0.050) 
 
Equal Variance Test: Passed (P = 0.653) 
 
Group N  Missing  Median    25%      75%     
MS to SM -x-section 21 0 0.250 0.207 0.330  
MS to SM - all 21 0 0.230 0.140 0.328  
 
T = 477.000  n(small)= 21  n(big)= 21  (P = 0.529) 
 
The difference in the median values between the two groups is not great enough to exclude the possibility 
that the difference is due to random sampling variability; there is not a statistically significant difference  (P 
= 0.529) 
 
Mann-Whitney Rank Sum Test Tuesday, June 13, 2006, 4:41:12 PM 
 
Data source: Data 1 in Notebook 1 
 
Normality Test: Failed (P = <0.001) 
 
Group N  Missing  Median    25%      75%     
Sand -x-section 21 0 0.0300 0.01000 0.113  
Sand - all 21 0 0.0400 0.0200 0.0675  
 
T = 445.500  n(small)= 21  n(big)= 21  (P = 0.890) 
 
The difference in the median values between the two groups is not great enough to exclude the possibility 
that the difference is due to random sampling variability; there is not a statistically significant difference  (P 
= 0.890) 
 
Mann-Whitney Rank Sum Test Tuesday, June 13, 2006, 4:41:41 PM 
 
Data source: Data 1 in Notebook 1 
 
Normality Test: Passed (P > 0.050) 
 
Equal Variance Test: Passed (P = 0.703) 
 
Group N  Missing  Median    25%      75%     
Sand to Gravel -x-section 21 0 0.110 0.0550 0.148  
Sand to Gravel - all 21 0 0.110 0.0500 0.133  
 
T = 463.000  n(small)= 21  n(big)= 21  (P = 0.782) 
 
The difference in the median values between the two groups is not great enough to exclude the possibility 
that the difference is due to random sampling variability; there is not a statistically significant difference  (P 
= 0.782) 
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Mann-Whitney Rank Sum Test Tuesday, June 13, 2006, 4:42:20 PM 
 
Data source: Data 1 in Notebook 1 
 
Normality Test: Failed (P = 0.010) 
 
Group N  Missing  Median    25%      75%     
Gravel -x-section 21 0 0.0800 0.0275 0.118  
Gravel - all 21 0 0.0600 0.0350 0.1000  
 
T = 482.000  n(small)= 21  n(big)= 21  (P = 0.450) 
 
The difference in the median values between the two groups is not great enough to exclude the possibility 
that the difference is due to random sampling variability; there is not a statistically significant difference  (P 
= 0.450) 
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APPENDIX C 
Optically Stimulated Luminescence sampling logs. 

 
 
Map 
ID 

Date of 
Collection 

Log 
Label 

UTM  
Northing 

UTM  
Easting Notes 

177 12/18/2005 LM01 4114910 340229 Upper and Lower Samples
178 12/18/2005 LM02 4115264 339629 Single Sample  
179 12/18/2005 LM03 4113292 340966 Upper and Lower Samples
180 12/18/2005 LM04 4112286 341006 Single Sample 
181 12/18/2005 LM05 4110438 337965 Failed Sampling Attempt  
182 12/18/2005 LM06 4112632 337847 Single Sample  
183 12/19/2005 LM07 4106678 337515 Single Sample  
184 12/19/2005 LM08 4110296 337968 Single Sample  
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APPENDIX D 
Notes on the surficial geology of Bayou Creek and Little Bayou Creek. 
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Bayou Creek Field Notes used in Site Maps 
Waypoint (UTM) 

ID Date Label 
Northing Easting 

Notes concerning waypoint 

1 7/12/04 LM03 4115682 338544 Bend w/ coarse gravel (Lower 
Cont.?) no evidence in cut bank 

2 7/12/04 LM04 4115613 338727 Gravel lining creek bed ~3' below 
surface 

3 7/12/04 LM05 4115605 338799 Riffle, gravel bed in bank (Lower 
Cont.?) (pic 30yds below waypoint) 

4 7/12/04 LM06 4115603 338859 Gravel lag deposit at stream level 

5 7/12/04 LM07 4115596 338928 Exposed upper fining sequence 
gravel - sand - mud 

6 7/12/04 LM08 4115645 339128 
Muddy sand in bank outcrop / friable 
/ poorly graded / buff color on outer 

surface / dk brown on inside  

7 7/12/04 LM09 4115587 339152 Stiff gray clay / oxidized on surface / 
inside beds ???? sand bar 

8 7/12/04 LM10 4115625 339220 Sandy riffles in stream bed 
9 7/12/04 LM11 4115552 339380 Sand bar 

10 7/12/04 LM12 4115519 339437 

Sandy beneath oxidized layer of very 
dark gray clay, sand on bar with high 

enough mud contact to exhibit 
polygonal desiccation (mud) cracks 

11 7/12/04 LM13 4115452 339406 Gravel stream bed 
12 7/12/04 LM14 4115478 339489 Dissemination of gravel sequence 

13 7/12/04 LM15 4115375 339584 Gravel stream bed / rather deep 
channelized section 

14 7/12/04 LM16 4115305 339465 Diffused seeps on south bank (16.7 
C / 121.7 us) 

15 7/12/04 LM17 4115291 339448 
Gravel seep on south bank, ~1' 

above water level / (16.4 C / 171.4 
us) 

16 7/12/04 LM18 4115245 339522 Gravel bar / pic 

17 7/12/04 LM19 4115262 339608 
Gravel to cobble sequence w/ fine 
grained matrix / long axis < 10cm / 
weakly cemented with iron oxide 

18 7/12/04 LM20 4115252 339619 Sandy bars with mud cracks 
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Bayou Creek Field Notes used in Site Maps 
Waypoint (UTM) 

ID Date Label 
Northing Easting 

Notes concerning waypoint 

20 7/12/04 LM22 4115139 339729 3 pictures  

21 7/12/04 LM23 4115085 339764 Gravel in lower sequence probably 
covered with mud / 1 picture 

22 7/12/04 LM24 4115041 339807 
Tributary on south bank, origin from a 
diffuse set of seeps (333 us/20.5C @ 

road) (322 us/ 19.4C @ stream) 

23 7/12/04 LM25 4115130 339886 Boil (325us / 16.2C) 

24 7/12/04 LM26 4115125 340015 Lots of fines covering in place 
stratigraphy 

25 7/12/04 LM27 4115057 340102 Uniform U-shaped channel / lots of 
Ohio River mud  

63 7/14/04 LM65 4115338 338299 Shallow, irregular, firm clay btm. 
sculpted by current 

64 7/14/04 LM66 4115145 338117 Gravel base and bars 
65 7/14/04 LM67 4115067 338130 Picture 

66 7/14/04 LM68 4114950 338101 Gravel base and bars to this point 

67 7/14/04 LM69 4114878 338153 Intermittent gravel and pools 

74 8/17/04 LM80 4115047 339825 
Gravel deposit w/ clast orientation 
strike: 310, 40-80, indicates some 

bedding 

75 8/17/04 LM81 4115252 339670 

Gravel deposit, ~1-1.5' above stream 
stage, exposed 50-60' along bank, 

overlain by 6-8' of sandy silt 
overgrown by modern vegetation 

76 8/17/04 LM82 4115275 339619 

Gravel deposit, (LM19) inclined sharp 
upper contact undulating w/ 1-2' of 

relief, (bar w/ internal scours), faintly 
imbricated, dominant strike 90, dip 

125, 10-100, stream strike 40 

88 6/10/05 LM06 4107617 337866 
Gravel in outcrop, ~ 16" to contact 
above stream, upward fining chert 

cobbles 
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Bayou Creek Field Notes used in Site Maps 
Waypoint (UTM) 

ID Date Label 
Northing Easting 

Notes concerning waypoint 

89 6/10/05 LM07 4107687 337963 

Pic of gravel lag, stringer, above 
contact, silty clay w/ interbedded 

sand below lag, massive silt off-white 
to tan above lag, contact grades 
coarser; contact about 32" above 

stage 

90 6/10/05 LM08 4107789 338011 Cross channel? 
91 6/10/05 LM09 4107798 337996 Lag w/ interbedding  

92 6/10/05 LM10 4107985 338074 Contact about 4' above stage; clast 
orientation taken 

93 6/10/05 LM11 4108268 338156 
Good cutbank for sampling, fining 

upward, finer gravel, worked w/ silt, 
overlaid by massive silt 

94 6/10/05 LM12 4108324 338149 Inter-worked sediments, 4 pics 

95 6/10/05 LM13 4108631 338116 
Gravel appears in lags (thick) or 
undulating, confluence of major 
tributary before wooden bridge 

96 6/10/05 LM14 4108673 338068 Wooden RR bridge 
97 6/10/05 LM15 4108721 338031 Pipe leaking water 

98 6/10/05 LM16 4108844 337968 

Ferric plume, some hard mottled clay 
in stream base, MW-344 at edge of 
stream, need to find well log (well 

elev. 366.14' mls) 

99 6/10/05 LM17 4108970 338005 Gravel lag above firm silty clay, 
coarse gravel, clast orientation taken 

100 6/10/05 LM18 4109133 338038 

Gravel just after bridge still 
appearing in lag along bank, much 

lower however, still w/ a gravel 
stream base 

101 6/10/05 LM19 4109345 338025 
Gravel outcrop, black oxide stringer 

along the bank, undulating, but 
mostly continuous elevation 

102 6/10/05 LM20 4109593 337957 Bank w/ black oxide stringer 

103 6/10/05 LM21 4109618 337953 Start of lots of black oxide staining in 
bank w/ red staining further below 

104 6/10/05 LM22 4109764 337933 Lag contact 
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Bayou Creek Field Notes used in Site Maps 
Waypoint (UTM) 

ID Date Label 
Northing Easting 

Notes concerning waypoint 

105 6/10/05 LM23 4109962 337929 

Gravel contact w/ silt above, worked 
grey clay between contact below, lt. 
grey clay below 2nd lag to stream 

bed, stream bed hard clay 

106 6/10/05 LM24 4110058 337930 Contact, 2 photos, clast orientation 
taken 

107 7/4/05 LM01 4207702 675603 Start of mottled clay in creek bed 
and bank under gravels (east bank) 

108 7/4/05 LM02 4108977 337983 End of mottled clay, banks eroding 

109 7/4/05 LM03 4108840 337965 Start of hard clay in creek bed again 

110 7/4/05 LM04 4108779 337995 

End of mottled clay in creek bed, 
covered bed by flat gravel scour, 

concurrent w/ linear feature causing 
an elevation change/ripple  

111 7/4/05 LM05 4108707 338022 Mottled clay in deep hole in stream 

112 7/4/05 LM06 4108701 338027 Could not find clastic dike in creek 

113 7/4/05 LM07 4108987 338002 
Gravels in outcrop subrounded, 

stream bearing 27o, Clast strike 294, 
320, 265, 286, 20 

114 7/4/05 LM08 4108995 338002 Clast strike 311, 327, 291 

115 7/4/05 LM09 4112156 337169 
Brushy creek stream is dry, bed load 

of fine subangular gravel, banks 
appear to be loess and modern soil. 

116 7/4/05 LM10 4106380 337243 Start near SR 725 Bridge, Loess 
banks, well graded gravel bed load 

117 7/4/05 LM11 4106383 337319 

Gravels in bank, light hard mottled 
clay below, sharp gravel contact w/ 
loess, light gray clay interlensing w/ 

gravels 

118 7/4/05 LM12 4106401 337353 
More chert gravels in bank, inter-

lensed w/ lt gray clay, just before old 
bridge 
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Bayou Creek Field Notes used in Site Maps 
Waypoint (UTM) 

ID Date Label 
Northing Easting 

Notes concerning waypoint 

119 7/4/05 LM13 4106432 337361 
Large gravel bar after bridge, fine 

gravel appears in bank above lt gray 
clay 

120 7/4/05 LM14 4106480 337416 

Lt clay, hard in creek bed, gravels in 
bank appear to fine upward, top of 

gravel bed undulates, largest clast ~ 
2", mean clast size 1.25" 

121 7/4/05 LM15 4106493 337417 
Gravel continues in banks, no longer 
clay base, now fine sand and gravel 

scour 

123 7/4/05 LM17 4106519 337445 Picture w/ pen for scale showing 
upward fining w/ clay inter-layered 

124 7/4/05 LM18 4106533 337468 Sandy to hard clay transition in creek 
bed 

125 7/4/05 LM19 4106570 337482 Fine gravel cropping out in bank, less 
clay in stream bed 

126 7/4/05 LM20 4106606 337499 Gravel still cropping out in bank, soft 
gravel stream bed  

127 7/4/05 LM21 4106612 337492 Transition to hard clay stream bed 

128 7/4/05 LM22 4106652 337503 
Clay appears to be cementing gravel 
slightly above creek stage, buff-tan to 

off-white in color 

129 7/4/05 LM23 4106650 337499 
Massive silt over generally upward 
fining medium to fine gravel, over lt 

gray clay (pic) 

130 7/4/05 LM24 4106674 337524 
Measured Section; massive silt over 

~ 25" upward fining sandy gravel 
bed; transitions to lt gray clay.  

131 7/4/05 LM25 4106706 337534 Continued gravel bed exposure 

132 7/4/05 LM26 4106715 337549 Outcrop exposure w/ shovel for 
scale, large gravel bar opposite bank 

133 7/4/05 LM27 4106801 337606 
Fewer fine gravels in bank and bed, 
hard clay below thin gravel lenses, 

lots of gravel deposits in stream beds
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Bayou Creek Field Notes used in Site Maps 
Waypoint (UTM) 

ID Date Label 
Northing Easting

Notes concerning waypoint 

135 7/4/05 LM29 4106850 337605 Pic of gravel bed w/ shovel for scale 
above mottled hard clay steam bed 

136 7/4/05 LM30 4106870 337618 
Pic of thin gravel bed w/ clay below, 

clay now appears higher in bank 
(section) 

137 7/4/05 LM31 4106922 337647 Fine gravel now lower in section 
(creek level) 

138 7/4/05 LM32 4106958 337662 Iron oxide discharge into stream 
(pic) 

140 7/4/05 LM34 4107035 337708 

Stream banks have flattened out, 
crossed over WKWMA horse trail, 
lots of gravel bars, don't appear in 

banks 

141 7/4/05 LM35 4107083 337714 Fine gravels appear again in banks, 
coarse in bed load 

142 7/4/05 LM36 4107102 337714 

Hard cemented black gravel chunk 
(paver), continued gravel in banks, 
small area of orange (iron oxide) in 

stream bed  

144 7/4/05 LM38 4107255 337805 

Stream was straight and overgrown 
since last point, but now gravel 
appears in the banks and bars 

appear opposite cut banks 

145 7/4/05 LM39 4107290 337812 More iron oxides in creek 
146 7/4/05 LM40 4106712 337535 Gravels cropping out in bank 

147 7/4/05 LM41 4106669 337496 Cemented gravel lenses "pavers" 

148 10/21/05 LM01 4110266 338002 Gravel in bank, ~2' thick, large 
gravel bar upstream of bridge 

149 10/21/05 LM02 4110252 337979 

Gravel in bank continuous from 
LM01, some mang. staining @ 

creek level, Buff to orange-brown, 
2.5" to pebble size clast 

150 10/21/05 LM03 4110231 337959 

Possible channel deposit, mixed 
gravel/sand at base, migrating to 
sand, migrating to 17" of upward 
fining gravel max clast size 1.5", 

covered by soil. 
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Bayou Creek Field Notes used in Site Maps 
Waypoint (UTM) 

ID Date Label 
Northing Easting

Notes concerning waypoint 

151 10/21/05 LM04 4110281 337946 Measured Section 42", see photo 

152 10/21/05 LM05 4110365 337966 
Med. to fine gravel over lt. gray 

clay, mang. staining at bed contact, 
clay pinches out 

153 10/21/05 LM06 4110430 337966 M-C 3.5' thick gravel over lt gray 
clay 

154 10/21/05 LM07 4110584 337850 Same gravel over clay,  clay is hard 
and extends to stream bed 

155 10/21/05 LM08 4110668 337826 Fine sand deposit in stream bed  

156 10/21/05 LM09 4110828 337781 
Gravel outcrop above clay, no re 
good outcrop from LM05 to BoBo 

Rd. to LM09 

157 10/21/05 LM10 4110994 337774 ~10' cutbank, lt. tan loess over M-C 
gravel over gray silt in stream bed 

158 10/21/05 LM11 4111179 337802 Thick clay below gravel in stream 
bed, clay > 4' thick 

159 10/21/05 LM12 4111251 337813 
Cemented gravel in place in stream 
above clay? pic start of increased 
vegetation, hard to see geology 

160 10/21/05 LM13 4111536 33790 

F gravel cropping out in bank, 
covered by overlying soil eroding off 

bank, steep to vertical banks ~8' 
high, Loess  

161 10/21/05 LM14 4112189 337811 

Large gravel bar, cutbank of 
modern soil over hard clay in creek, 

not much to see, spare gravel in 
bank, good in bed load, next to farm 
fields causing mud/silt drapes over 

outcrop 

162 10/21/05 LM15 4112209 337786 

Gravels in bank covered by mud 
drape, more sand appearing in 

bars/bed load, gradual decrease in 
gravel since entering private 

property, fairly continuous gravel 
bars or possible beds in creek? 

163 10/21/05 LM16 4112242 337734 Gravel bar or bed?  
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Bayou Creek Field Notes used in Site Maps 
Waypoint (UTM) 

ID Date Label 
Northing Easting

Notes concerning waypoint 

164 10/21/05 LM17 4112262 337664 Large gravel bar, small tributary 
nearby, mud banks 

165 10/21/05 LM18 4112439 337699 

Pebbles to fine gravels ~ 4' above 
stream, ~1' thick, looks different 

than upstream outcrops, but could 
be due to mud drape, just upstream 

of Ogden Landing Rd. bridge 

166 10/21/05 LM19 4112539 337753 
Large sand bar after bridge, some 
gravel in opposite bank, a lot less 

gravel in bed load. 
167 10/21/05 LM20 4112640 337826 Small gravel bar  

168 10/21/05 LM21 4112662 337820 Measured section including blue-
gray clay, see pic / section 

169 10/21/05 LM22 4112800 337881 Gravel bars before and between 
riprap flood control structures  

170 10/21/05 LM23 4113088 338021 Blue-gray mud in creek, standing 
on sand next to field drainage ditch 

171 10/21/05 LM24 4113123 337997 Small gravel / sand bar 

172 10/21/05 LM25 4113157 337974 
Small gravel / sand bar / Fe oxide 

deposits, several deep pools in this 
stretch of creek 

174 10/21/05 LM27 4113546 337996 Blue-gray clay in bank, see pic / 
section 

175 10/21/05 LM28 4113803 338183 
Very little gravel after deep pools, 
now mostly sand bars and sand in 

bed load 

176 10/21/05 LM29 4108148 336758 
Creek very deep, and snaggy due 
to beaver dams and downed trees 

from LM28 to low water bridge 
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Little Bayou Creek Field Notes used in Site Maps 
Waypoint (UTM) ID Date Label 

Northing Easting 
Notes concerning waypoint 

27 7/13/04 LM29 4109477 341383 Sandy stream bed, shoaling behind 
dead fall / banks clay 

28 7/13/04 LM30 4109516 341428 Small gravel bar, cemented grains 
with Fe-Manganese? / clay banks 

29 7/13/04 LM31 4109589 341441 Pebble lens (picture) 

30 7/13/04 LM32 4109810 341421 3 pebble banding pictures of upper 
continental 

31 7/13/04 LM33 4109868 341429 Pebble lens (picture) 
32 7/13/04 LM34 4109969 341438 Pebble lense(17'L, 1'Max H) 
33 7/13/04 LM35 4110092 341459 Pebble lens (19'L, ?H) 

34 7/13/04 LM36 4110342 341413 Gravel lags exposed on both sides 
of the creek, <1' thick 

35 7/13/04 LM37 4110982 341293 
Gravel appears to have coarsened 
to cobble size, lags are frequent but 

appear discontinuous 

36 7/13/04 LM38 4111018 341303 Coarse sand bars and gravel lags in 
stream bed 

37 7/13/04 LM39 4111254 341038 Coarse gravel bar 
38 7/13/04 LM40 4111291 340995 NS diversion ditch??? 

41 7/13/04 LM43 4111885 340966 Lots of debris in water causing 
pooling >4' 

42 7/13/04 LM44 4112139 340997 Fine grained sand 

43 7/13/04 LM45 4112287 341022 

Large cut bank w/ white silty sand, 
Cut bank mostly composed of clay, 

weakly Fe cemented sand "flag 
stones" in creek bed 

44 7/13/04 LM46 4113251 340959 WB 1.5 
45 7/13/04 LM47 4113295 340911 Lower Cont. Deposit 

46 7/13/04 LM48 4113482 340857 Lower Cont. Deposit thickened to ~3' 
above stream level 

47 7/13/04 LM49 4113581 340828 Seep (317us / 15.7 C) 

48 7/13/04 LM50 4113677 340825 Fe cemented material no longer 
present in stream bed 

49 7/13/04 LM51 4113832 340801 Visual contact of LC/UC ~1' above 
stream level 

50 7/13/04 LM52 4114034 340637 (131us / 16.6C) 
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Little Bayou Creek Field Notes used in Site Maps 
Waypoint (UTM) ID Date Label 

Northing Easting 
Notes concerning waypoint 

51 7/13/04 LM53 4114126 340597 (149us / 15.8C) 
53 7/13/04 LM55 4114218 340549 Last visual west bank seep  

54 7/13/04 LM56 4114261 340528 Ash pond seep, east bank (1110us / 
16.2 C) 

55 7/13/04 LM57 4114279 340519 
Ash pond seep, east bank (1314us / 
16.4 C) / west bank seep (250us / 

18C) 

56 7/13/04 LM58 4114565 340376 LC reappears on east bank, east 
bank boil (325us / 16.2C) 

57 7/13/04 LM59 4114564 340362 East bank seep (328us / 16.4C) 

58 7/13/04 LM60 4114567 340354 East bank seep (327us / 16.3C) 

59 7/13/04 LM61 4114580 340347 West bank seep (186us / 16.6C) 

60 7/13/04 LM62 4114774 340237 LC crops out on both banks 

61 7/13/04 LM63 4115076 340204 Confluence of Bayou / Little Bayou 

69 8/17/04 LM71 4114874 340224 

Gravel deposit in cut bank, showing 
some preferred clast orientation 

(strike long axis 90-130; dip 350-40), 
Gross upward fining sequence 

evident in "cycles", clast up to 4.5" 
long axis, chert gravel 

70 8/17/04 LM76 4114821 340225 

(near LM62) thinner gray soil layer 
than LM71, similar leach horizon, 
can't see contact w/ gravel due to 

erosion 

71 8/17/04 LM77 4114771 340243 
Gravel deposit @~ the same height 
as LM71, covered by soil and silt, ~ 

8' above stream level 
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Little Bayou Creek Field Notes used in Site Maps 
Waypoint (UTM) ID Date Label 

Northing Easting 
Notes concerning waypoint 

72 8/17/04 LM78 4114768 340278 

Chert gravel deposit, similar size 
range to other deposits, ~ 5-6' above 
stream stage, Long axis orientation, 
Strike 90, 30-50, 45, 10, 52, 310; Dip 

29, Upward fining sequence w/ 
irregular but sharp contact w/ 

overlying silts    

73 8/17/04 LM79 4114645 340323 

Gravel layer, scoured upper contact 
~5' above stream stage, upward 

fining sequence, w/ sharp irregular 
upper contact w/ overlying silts, clast 

orientation strike: 90,100,30-
50,45,10,52,310; dip: 29  (modern 
stream strike 329), this gravel layer 
seems to be supporting the modern 

stream terrace, defining a fairly 
consistent break in slope 

82 8/18/04 LM88 4113262 340948 Gray clay above gravel? 

83 6/8/05 LM01 4113241 340964 Dark gray clay washing into creek 
(from ash pond?) 

84 6/8/05 LM02 4113262 340963 Areas appear to contain organic 
material, but appears modern 

85 6/8/05 LM03 4113381 340879 Sampled 

86 6/8/05 LM04 4113391 340879 Sampled / hand augered / photo 

87 6/8/05 LM05 4114870 340231 

Attempted sampling location on LBC 
near confluence.  (Pit 3X5X4'), 2 
hand auger samples taken.  1 at 

contact ~ 15" into back of pit and 1 
~5" deep in contact 20" below 

contact 
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APPENDIX E 
Grain-size distribution curves from  

Optically Stimulated Luminescence sample preparation. 
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